GIZMOFRAGTS

LEARN DATA STRUGTURE
SORTING & FILE HANDLING IN G

Kaustav Ghosh Dastidar

www.gizmofacts.com

Learn Data Structure
Sorting & File Handling in C

Introduction

This book covers the fundamental concepts involved in Data Structure Sorting & File
Handling in C. We will look at how they are affected by the design of appropriate data
structures, as well as how some structures and algorithms are more efficient than others
in for the same task. We will focus on a few fundamental tasks that underpin much of
computer science, such as stacks and linked lists and sorting programs, but the techniques
discussed will be much more general. We will start by looking at some fundamental data
structures like arrays, lists, pointers, queues, stacks, and trees, and then look at how they
are used in various searching, sorting, and file-handling algorithms in C.

We will investigate the computational efficiency of the algorithms we develop, as
well as gain intuitions about the advantages and disadvantages of the various potential
approaches for each task.

It is hoped that programmers and students will find this book interesting and useful to
all those who want to achieve the desired level of competence, not only in exams but
also in their efforts to solve real-world problems. Critical feedback and constructive
suggestions for improving the E-book are welcome and greatly appreciated.

With Warm Regards,

Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

About The Author

The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Disclaimer

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Table of Content

C Program-To Sort Elements Using Bubble Sort..........cccccvuueerrrececcennee. 6-7
C Program-To Sort Elements Using Insertion Sort...........cccceeeeeeccnnenncee. 8-9
C Program-To Sort Elements Using Merge Sort........eeeeeeeeccccccnnnns 10-12
C Program-To Sort Elements Using Quick SOrtccceueeereeeccescccennes 13-15
C Program-To Sort Elements Using Selection Sort............cceeeeceeecnnnns 16-17
C-Program To Implement Stack UsSing Array.....cccceeeeccnnnenreeccccssssenes 18-19
C-Program To Implement Stack Using Pointer..........ccceeeeerreeccceseccennes 20-23

C-Program-Linked List Program To Add Modify And Delete Elements
In Singular Linked List.....cccccciriiiisiccsscccccssccsscssneeseeessssssesssssssssssssssssssss 24-33

C Program-Basic File Handling Operations...........ccccceveeeeveeeeeseseeeseees 34-40

INEXT SEEPS?.ciiiiiiiiiiiiiiniiiieieenneeeesssnsse 4

C Program-To Sort
Elements Using Bubble Sort

Code description

This is a simple sorting algorithm. In this algorithm each element is compared with
adjacent element and swapped if their position is incorrect. This algorithm is named as
bubble sort because after every pass the largest element moves to the end of the array
same as like bubbles, the lighter elements come up and heavier elements settle down.

Example: In each step, elements written in bold are being compared.

First Pass:

(51428)—>(15428), Here, algorithm compares the first two elements, and swaps
since 5 > 1.

(15428)—> (14528), Swap since 5 >4

(14528)—> (14258), Swap since 5> 2

(14258)—>(14258), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.

Second Pass:

(14258)—=>(14258)

(14258)—=>(12458), Swap since 4 > 2

(12458)—=>(12458)

(12458)—>(12458)

Now, the array is already sorted, but the algorithm does not know if it is completed. The
algorithm needs one whole pass without any swap to know it is sorted.

Third Pass:

(12458)—>(12458)
(12458)—>(12458)
(12458)—>(12458)
(12458)—>(12458)

Source Code

//" Created by Kaustav Ghosh Dastidar.
#include <stdio.h>
int main()
{
int a[100],1,n,step,temp;
printf(“Enter the size of the array element: *);
scanf(“%d”,&n);
printf(“%d. Enter the array elements: “,i+1);
scanf(“%d”,&a[1]);
for(step=0;step<n-1;++step)
for(i=0;i<n-step-1;++1)
{
if(a[i]>a[1+1]) /* Change > to <in this line, if you want to sort in descending order,
*/
{
temp=ali];
a[i]=a[i+1];
a[i+1]=temp;
b
b

printf(“In ascending order:);
for(i=0;1<n;++1)

printf(“%d “,a[i]);
return 0;

}

Output

Enter the size of the array element: 5
1. Enter the array elements: 514 2 8
In ascending order: 1 24 58

C Program-To Sort
Elements Using Insertion Sort

Code Description

Insertion sort is used to sort a list of unsorted numbers and arrange those numbers in
ascending or descending order.

It’s starts from the second element, compare it with the first element and swap it if it
is not in order. Similarly, in the next iteration it checks the third element and place it
at the right place in the subarray of the first and second elements (since the subarray
containing the first and second elements 1s already sorted). This step repeats with the
fourth element of the array in the next iteration and place it at the right position in the
subarray containing the first, second and the third elements. This process continues until
the array gets sorted.

Source code
//Created by Kaustav Ghosh Dastidar.
#include <stdio.h>
int main()
{
int n, array[1000], a, b, t;

printf(“Enter number of elements\n”);
scanf(“%d”, &n);

printf(“Enter %d numbers to be sorted\n”, n);
for (a=0;a<n;at+) {

scanf(“%d”, &array[a));
)

for(a=1;a<=n-1;at+) {
b =a;

Gizmofacts 8

while (b> 0 && array[b-1] > array[b]) {
/*To sort elements in descending order change b > 0 && array[b-1] < array[b] in above

line.*/
t = array[b];
array[b] = array[b-1];
array[b-1] =t;
b--;
b
)

printf(“Sorted numbers in ascending order:\n”);

for(a=0;a<=n-1;at+) {
printf(“%d\n”, array[a]);
§

return 0;

;

Output

Enter number of elements

6

Enter 6 numbers to be sorted
89

-5

16

72

25

23

Sorted numbers in ascending order:
-5

16

23

25

72

89

C Program-To Sort
Elements Using Merge Sort

Code description

This is a very efficient sorting algorithm. All array of n element is split around its center
to produce two sub arrays. After these two arrays are sorted independently, they are
merged to produce the final sorted list.

Source code
//Created by Kaustav Ghosh Dastidar.

#include<stdio.h>

#include<conio.h>

#define max 10

void mergesort(int x[], int n)

{

int aux[max|, 1, j, k, 11, 12, size, ul, u2;

size = 1; /* Merge array of size 1 */

while (size <n)

{
11 =0; /* Initialize lower bounds of first part */
k = 0;/* k 1s index for auxiliary array. */
while (11+size <n) { /* Check to see if there */
/* are two parts to merge */

/* Compute remaining indices */

12 = 11+si1ze;

ul =12-1;

u2 = (12+size-1 <n) ? 12+size-1 : n-1;

/* Proceed through the two subparts */

for(i=11,;=12;1<=ul &&j <=u2; k++)

/* Enter smaller-into the array aux */

if (x[i] <=x[j])

aux[k] = x[1++];

else

aux[k] = x[j++];

/* At this point, one of the subparts */
/* has been exhausted. Insert any */

Gizmofacts 10

/* remaining portions of the other part */
for (; 1 <=ul; k++)
aux[k] = x[1++];
for (;] <= u2; k++)
aux[k] = x[j++];
/* Advance 11 to the start of the next pair of parts. */
11 =u2+1;
} /* end while */

/* Copy any remaining value */
for 1=11; k <n; i++)
aux[k++] = x][1];
/* Copy aux into x and adjust size */
for (1=0;1<n; 1t++)
x[1] = aux[i];
size *=2;
} /* end while */
} /* end mergesort */

void main()
{
int 1,a[max]; ;
clrscr();
printf(“Enter %d Numbers :\n”,max);
for(i=0;1<max;i++)
{
flush(stdin);
printf(“enter no %d:\t”,i+1);
scanf(“%d”,&a[1]);
fflush(stdin);
h
mergesort(a,max);
printf(“\nThe Elements in Sorted Form *);
for(i=0;i<max;i++)
{
printf(“\n%d”,a[1]);

}
getch();

Outputl

Enter 10 Numbers :
enterno 1: 10

enter no 2: 9
enter no 3: 8
enter no 4: 7
enterno 5: 6
enter no 6: 5
enterno 7: 3
enter no 8: 1
enterno 9: 4
enter no 10:2

The Elements in Sorted Form

|
2
3
4
5
6
7
8
9
1

C Program-To Sort
Elements Using Quick Sort

Code description

This 1s a very efficient sorting technique which is based on partitioning of array of data
into smaller arrays.It picks an element as pivot and partitions the given array around the
picked pivot.Thus a large array is divided into two parts:

1.Array which holds smaller than specified value (pivot).

2.Array which holds values greater than the pivot value.

This partitioning continues until the sub-arrays are sorted.

Source code

// Created by Kaustav Ghosh Dastidar.
#include <stdio.h>

void quick sort(int[],int,int);

int partition(int[],int,int);

int main()

1

int a[50],n,1;

printf(“Enter the no of elements you want to enter:”);
scanf(*“%d”,&n);

printf(“\nEnter array elements:”);

for(i=0;i<n;i++)
scanf(“%d”,&al[i]);

quick sort(a,0,n-1);
printf(“\nAfter sorting array elements:”);

for(i=0;i<n;i++)
printf(“%d “,a[1]);

return 0;

}

void quick sort(int a[],int 1,int h)
{

int j;

if(I<h)

{

J=partition(a,l,h);
quick_sort(a,l,j-1);

quick sort(a,j+1,h);

b

b

int partition(int a[],int 1,int h)

{

It v,1,j,temp;
v=a[l];

1=1;

J=h+1;

do

{
do

i+
while(a[i]<v&&i<=h);
do

J==s
while(h<a[j]);

Gizmofacts

A

if(i<j)

{
temp=ali];
a[i]=a[j];
a[j]=temp;

}
while(i<j);

a[l]=a[j];
afjl=v;

return(j);

;

Output

Enter the no of elements you want to enter:9

Enter array elements:8 3910166154

After sorting array elements:1 345689 10 16

C Program-To Sort
Elements Using Selection Sort

Code description

Elements Using Selection Sort algorithm uses a technique to sort a given array by
repeatedly finding the minimum element from the unsorted list and then placing each
element in it’s correct position. This algorithm maintains two subarrays in a given array.

1) The sorted subarray.
2) Remaining subarray which is unsorted.

In each iteration, the minimum element from the unsorted subarray is picked and moved
to the sorted subarray.

Source code

// Created by Kaustav Ghosh Dastidar.

#include <stdio.h>

int main()

{

int data[100],a,b,steps,temp;

printf(““The number of elements to be sorted: «);
scanf(“%d”,&b);

for(a=0;a<b;a++)

{

printf(“%d. Enter element: “,a+1);
scanf(“%d”,&data[a]);

J

for(steps=0;steps<b;++steps)
for(a=steps+1;a<b;a++)

{

if(data[steps]>data[a])

/* If you want to sort in descending order, change > to <. */

{

Gizmofacts 16

temp=data[steps];
data[steps]—=data[a];
data[a]=temp;

b

b

printf(“Sorted list in ascending order: *);
for(a=0;a<b;a++)

printf(“%d *“,data[a]);

return 0;

}

Output

The number of elements to be sorted: 6
1. Enter element: 6

2. Enter element: 71

3. Enter element: 8

4. Enter element: 9

5. Enter element: 30

6. Enter element: 89

Sorted list in ascending order: 6 8 9 30 71 89

C-Program
To Implement Stack Using Array

Code description

This “C Program” is written to insert element in STACK using Array. A “Stack” is
a data structure which is used to store data in a particular order. The basic operations
of STACK is PUSH() and POP(). The PUSH() function is used to insert elements in
STACK and POP() function is used to remove elements from STACK. Here we are all
printing the elements which popping out from STACK.

Source code

// Created By Kaustav Ghosh Dastidar
#include<stdio.h>

int main()
{
int st[10];
int tos=-1,1,1;

printf(“Enter range: *);
scanf(“%d”,&r);
//pushing data into a stack
for(i=0;1<r;i++)
{
tos++;
printf(“\nEnter data %d element “,i+1);
scanf(*“%d”,&st[tos]);

j

//displaying the stack
printf(“\nElements of the stack are: *);
for(i=tos;i>=0;1--)

{

Gizmofacts 18

printf(“\n%d “,st[i]);
j

//popping the stack.
printf(“\nThe popped elements are: *);
while(tos!=-1)
{
printf(“\nPopping element: %d”,st[tos]);
tos--;

j

return O;

Output

Enter range: 5

Elements of the stack are:
100

56

11

44

23

The popped elements are:
Popping element: 100
Popping element: 56
Popping element: 11
Popping element: 44
Popping element: 23

Gizmofacts

C-Program
To Implement Stack Using Pointer

Code description

This “C-program” will push() elements in STACK and will also pop() out elements
from stack by following LIFO (last-in-first-out) approach. Here we have created 4 user-
defined function:

push()

pop()
isFull()

iIsEmpty()
1. push() — This function will insert the element into stack.

2. pop() — This function will delete the element from stack which was entered last.
Because stack follows LIFO approach.

3. 1sFull() — This function is used to check if the “stack™ is already full. If its full then it
will show the message “STACK OVERFLOW*.

4. isEmpty() — This function is used to check if the “stack” is empty after deleting
elements from STACK. If it is totally empty and you try to delete elements from STACK,
then it will display the message “STACK UNDERFLOW*.

Source code

//Created By Kaustav Ghosh Dastidar

#include<stdio.h>

#define MAX 10

typedef struct stacktype

{

Gizmofacts 20

int top;
int infol MAX];

}stack;

void push(stack *,int);

void pop(stack *);

int isFull(stack);

int isEmpty(stack);

/*WE HAVE TO SEND INSTANCE/REFERENCE OF STACK IN THE main()*/

int main()

{
stack s; //Instance of stack 1s created
int 1,x;

s.top=-1; //Initialising the stack
do
{
printf(“\nPress [1] for PUSH operation in stack:”);
printf(“\nPress [2] for POP operation in stack:”);
printf(“\nPress [0] to EXIT”);
printf(“\n\n\tEnter your choice: *);
scanf(* %d”,&i);
switch(1)
{
case 1:
printf(“\nEnter an element to push in stack: *);
scanf(* %d”,&x);
push(&s,x);
break;

case 2:

pop(&s);
break;

case 0:
printf(“\nTHE END......"”);
break;

default:
printf(“\nINVALID CHOICE”);
}
}while(1!=0);
return 0;
}
void push(stack *p,int item)
{
if(isFull(*p))
{
printf(“\nSTACK OVERFLOW!.....”);
return;

}

p->top++;

printf(“\nThe element pushed is %d”, p->info[p->top|=item);
b
int isFull(stack s)
{
return(s.top==MAX-1);
b
void pop(stack *p)
{
if(isEmpty(*p))
{
printf(“\nSTACK UNDERFLOW!.....”);
return;
b
printf(“\nThe element popped is %d”,p->info[p->top--]);
/*STACK follows LIFO that is why the last element which got entered was pooped
out first from STACK */

b
isEmpty(stack s)

{

return(s.top==-1);

;

Output

Press [1] for PUSH operation in stack:
Press [2] for POP operation in stack:
Press [0] to EXIT

Enter your choice: 1
Enter an element to push in stack: 100

The element pushed is 100

Press [1] for PUSH operation in stack:
Press [2] for POP operation in stack:
Press [0] to EXIT

Enter your choice: 1
Enter an element to push in stack: 200

The element pushed is 200

Press [1] for PUSH operation in stack:
Press [2] for POP operation in stack:
Press [0] to EXIT

Enter your choice: 2

The element popped is 200

STACK follows LIFO that is why the last element which got entered was pooped out
first from STACK!

Press [1] for PUSH operation in stack:

Press [2] for POP operation in stack:

Press [0] to EXIT

Enter your choice: 0

C-Program-Linked List
Program To Add Modify And
Delete Elements In Sigular Linked List

Code description

Linked list is a linear data structure like arrays but they are not stored at contiguous
location. All the elements in the “Linked List” are linked using pointers by storing the
address of next node element.

Head
| A ——— B C D — MULL
Data MNext Data Next Data MNext Data -NEHT.
Significance

Arrays are used to store linear data of similar types but have some limitations:

1. Array is having fixed size and we should know the upper limit on the number of
elements entered in array, in advance. The allocated memory size will be equivalent to
the upper limit.

2. Also,Inserting a new element in an array is complicated and expensive, because space
has to be created for the new element and to create space existing elements have to be
shifted.

From example below, in a sorted array of elements num|[], it will be difficult to insert
new records.

num[] = [100, 200, 300, 400, 500].

Now, if we want to insert a new number 110, then to maintain the sorted order, we have
to shift all the elements after 100 (excluding 100).

Gizmofacts 24

Deletion is also complex, with arrays unless you are using some other techniques. For

example, to delete 200 in num[], everything after 200 has to be shifted.

Advantages over arrays
1. Dynamic size

2. Ease of insertion and deletion or elements

Drawbacks:
1. Accessing elements randomly is not allowed. We have to access elements sequentially

starting from the first node. So binary search using linked list is not possible.

2. Extra memory space for a pointer is required with each element of the list.

Source Code
//Created By Kaustav Ghosh Dastidar
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#define NULL 0
struct link_list
{
int item;
struct link_list *next;
K
typedef struct link list node;
void entry(node *p); /*Function prototype declaration™/
void insertfront(node *p);
void insertend(node *p);
void delfront(node *p);
void delend(node *p);

void insertafter(node *p);
void delafter(node *p);
void print(node *p);
int count(node *p);
void main()
{
node *head;
int choice;
clrscr();
head=(node*)malloc(sizeof(node));
entry(head);
print(head);
printf(“\nThe number of items=%d\n”,count(head));
printf(“\n\nEnter [1] to insert a node at the front of the list.”);
printf(“\n\nEnter [2] to insert a node at the end of the list.”);
printf(“\n\nEnter [3] to delete a node at the front of the list.”);
printf(“\n\nEnter [4] to delete a node at the end of the list.”);
printf(“\n\nEnter [5] to insert a node at a given position in the list.”);
printf(“\n\nEnter [6] to delete a node at a given position in the list.”);
printf(“\n\n\t\tPlease enter your choice:”);
scanf(“%d”,&choice);
switch(choice)
{
case(1):
insertfront(head);
break;
case(2):
insertend(head);
break;
case(3):
delfront(head);
break;
case(4):
delend(head);
break;
case(d):
insertafter(head);
break;
case(6):
delafter(head);

Gizmofacts 26

h
//

getch();

b

void entry(node *p)

{
printf(*“\nPlease enter the value.”);
printf(“\n(Type -999 if end):”);
scanf(“%d”,&p->item);
if(p->item==-999)
{

p->next=NULL;

}

else
{
p->next=(node*)malloc(sizeof(node));
entry(p->next);
b

return;
j
void print(node *p)
{
if(p->next==NULL)
printf(“End”);
else
{
printf(“%d------ > p->item);
print(p->next);
j

return;

}

void insertfront(node *p)
{
node *q;
clrscr();
g=(node*)malloc(sizeof(node));
printf(“\nPlease enter the information part of the node:”);
scanf(“%d”,&q->item);
gq->next=p;
pP=q;
print(p);
printf(“‘\n\nThe number of items=%d\n”,count(p));

return;

}

void insertend(node *p)

{

node *q;

q=p;

while(q->next!=NULL)

{
J=g->next;

)
clrscr();
printf(“\nPlease enter the information part of the node:”);
scanf(“%d”,&q->item);
g->next=(node*)malloc(sizeof(node));
g->next->next=NULL;
g->next->item=-999;
print(p);
printf(“\n\nThe number of items=%d\n”,count(p));
return;

}
void delfront(node *p)

{
node *q;
g=(node*)malloc(sizeof(node));
g->item=p->item;
g->next=p->next;
p=p->next;
free(q);
printf(“\n\tThe linked list looks like this after the deletion of the first node\n”);

print(p);
printf(*\nThe number of items=%d\n”,count(p));

}
void delend(node *p)

{
node *q,*s;
q=p;
while(g->next->next!=NULL)
{

g=q->next,;

h
Gizmofacts 28

s->next=q->next->next;
s->item=q->next->item;
q->item=-999;
g->next=NULL;
free(s);
printf(*“\n\n\tThe linked list looks like this after the deletion of the last
node:\n”);

print(p);

return;
}
void insertafter(node *p)
{

int 1,,k=0;
node *q,*s;
clrscr();
printf(“\nThe linked list looks like below:\n”);
print(p);
printf(“\nPlease enter the number of the node after which the new node will be \
ninserted:”);
scanf(“%d”,&1);
q=p;
j=i-1
while(k<j-1)
{
J=g->next;
k++;
b
printf(“\nPlease enter the information part of the new node:”);
scanf(“%d”,&s->item);
s->next=q->next;
g->next=s;
printf(“\nThe link list after insertion is given bellow:\n”);
print(p);
printf(‘“\nThe number of items=%d\n”’,count(p));
return;

}
void delafter(node *p)

{

Gizmofacts 29

int 1,k=0,j;
node *q,*s;
clrscr();
q=p;
printf(“nThe list is given bellow:”);
print(p);
printf(‘“‘\nPlease enter the number of the node which you want to delete:”);
scanf(“%d”,&1);
j=i-1;
while(k<j-1)
{
g=q->next;
k++;
§
s->next=q->next->next;
s->item=q->next->item;
g->next=q->next->next;
free(s);
printf(“\nThe List looks like this after deletion:\n”);

print(p);
return;
b

int count(node *p)

{
if(p->next==NULL)
return(0);
else
return(1+count(p->next));

Gizmofacts

Output 1

The below screenshot is the output of the program of adding data to the “Linked List”.
Type “-999” to mark as the end of “Data” addition into the “Linked List”.

Please enter the value.
(Type -999 if end):10

Please enter the value.
(Type -999 if end):20

Please enter the value.
(Type -999 if end):-999
»20-————=>End
The numher of items=2
Enter insert node the front of the list.
Enter o insert node at the end of the list.
Enter [: delete a node at the front of the list.
Enter [4] to delete a node at the end of the list.
Enter insert a node at a given position in the list.

Enter [delete a node at a given position in the list.

Please enter your choice:

Output 2
The below screenshot 1s the output of the program of adding data to the front node of

the “Linked List”.In the below example, “900” value has been added at the front of the
linked list.

Please enter the information part of the node:900
200———-2>10——-220—————->End

The number of items=3

Output 3

The below screenshot 1s the output of the program of adding data to the end node of
the “Linked List”.In the below example, “1000” value has been added at the end node
of the linked list.

Please enter the information part of the node:1000
220——————2>1000- >End

The number of items=4

Output 4

The below screenshot 1s the output of the program of adding data at the given position
in the “Linked List’. You have to provide the “number of the node” or “position”
where you have to insert the new node with data. In the below example, we have
chosen “2” as the number or position where the new node has been inserted (50).

»End
leaze enter the number of the node after which the new node will be
inzerted:2

leaze enter the information part of the new node:50

The link list after insertion i= given bellow:
>160- >1000- >End

Output 5

The below screenshot is the output of the program is to delete node from the front
position of the “Linked List”. In the below example, “900” will be deleted from the

front.

e enter the walue.
-999 if end) 99
——>»1000——— >End
The number of items=4
insert a node at the front of the list.
insert a node at the end of the list.
delete a node at the front of the list.

delete a node at the end of the list.

insert a node at a given position in the list.

delete a node at a given position in the list.

Please enter your choice:3

The linked list looks like this after the deletion of the first node
>End
The number of item

Output 6

The below screenshot is the output of the program is to delete node from the end
position of the “Linked List”. In the below example, “1000 will be deleted from the
end.

(Type 999 if end) 10600

Flease enter the wvalue.

(Type -999 if end):-999

9——————-—>2>10————>»20————— > 1000——————>End

The number of items=4

Enter [1]1 to insert a node at the front of the list.

Enter [2]1 to insert a node at the end of the list.

Enter [3] to delete a node at the front of the list.

Enter [4]1 to delete a node at the end of the list.

Enter [5]1 to insert a node at a given position in the list.

Enter [6]1 to delete a node at a given position in the list.
Pleazse enter your choice:4

The linked list looks like this after the deletion of the last node:
e————10——>> 20— >End

Output 7

The below screenshot is the output of the program is to delete data from the given
position in the “Linked List”. You have to provide the “number of the node” or
“position” where you have to delete the new node with data. In the below example, we
have chosen “3” as the number or position where the from where the node (20) can be

deleted.

18 list is given bellow: 906
lease enter the number of the node which you want to delete:3

C Program-
Basic File Handling Operations

Code description

In this program we will learn how to add a new record, modify an existing record, delete
an existing record and display all record(s) on a file using “C”. “C” is a very powerful
language and considered to be the mother of all programming languages since it creates
the base of a programmer.

In the below program we have used several functions, lets understand each operation
in detail:

fopen(): This function is used for opening a file.

Syntax:FILE pointer name=fopen (“file_name”,”Mode”);

Example: fp=fopen(“e:/c/kaustav.txt”,’rb+")

The various kinds of “Opening Modes” in Standard I/O are listed in below table

File Meaning of Mode During In existence of file

r Open for reading. If the file does not exist, fopen() returns NULL.

rb Open for reading in binary mode. If the file does not exist, fopen() returns NULL.

w Open for writing. If the file exists, its contents are overwritten. If the file does not

exist, it will be created.

wb Open for writing in binary mode. If the file exists, its contents are overwritten. If the file does not

exist, it will be created.

Gizmofacts

a Open for append. i.e, Data is added. If the file does not exists, it will be created.

to end of file.

ab Open for append in binary mode. i.e, If the file does not exists, it will be created.

Data is added to end of file.
r+ Open for both reading and writing. If the file does not exist, fopen() returns NULL.

rb+ Open for both reading and writing in If the file does not exist, fopen() returns NULL.

binary mode.

w+ Open for both reading and writing. If the file exists, its contents are overwritten.

If the file does not exist, it will be created.

wb+ Open for both reading and writing in If the file exists, its contents are overwritten. If the file does

binary mode. not exist, it will be created.
a+ Open for both reading and appending. If the file does not exists, it will be created.

ab+ Open for both reading and appending If the file does not exists, it will be created.

binary mode.

fclose: This function is used for closing an open file

Syntax: fclose(fp)

f(seek): This function will help to get the required data.
Syntax: fseek(FILE * stream, long int offset, int whence)

“FILE* stream” is the pointer to the file.

“long int offset” is the position of the record to be found.

“int whence” specifies the location where the offset starts. There are 3 different whence
in SEEK. The details are given below:

SEEK SET-Starts the offset from the beginning of the file.

SEEK END-Starts the offset from the end of the file.

SEEK CUR-Starts the offset from the current location of the cursor in the file.
Source Code
// Created by Kaustav Ghosh Dastidar.

/* Write a menu driven program that will handle an employee file having
following record structure:
EMPLOYEE
[
int EMP_NO(4),
char EMP NAME(30),
float EMP SAL(5.2)
]
The operation to be performed on the file are:
1. Add a new record
2. Modify an existing record
3. Delete an existing record
4. Display all record(s).
*/

#include<stdio.h>

void add_record(FILE *);
void modify record(FILE *);
void delete record(FILE *);
void display record(FILE *);

typedef struct employee
{

nt no;

char name[30];

float sal;

}EMP;

Gizmofacts

void main()
{
FILE *fp;
int choice;
do
{
clrscr();
fp=fopen(“e:/c/kaustav.txt”,’rb+");
if(fp==NULL)
{
fp=fopen(“e:/c/kaustav.txt”,”wb+");
if(fp==NULL)
{
printf(“\n\n Unable to create a file:”);
getch();
exit(1);
b
b

printf(“ sfskoskeskeskoskeoskosk MENU ********\n”);
printf(*‘ -----mmmmmm e ”);

printf(“\n\n Press 1: Add a new record”);
printf(“\n\n Press 2: Modify a existing record”);
printf(“\n\n Press 3: Delete a existing record”);
printf(“\n\n Press 4: Display all record(s)”);
printf(*“\n\n Press 0: Exit”);

printf(“\n\n\t Enter your choice: *);
scanf(“%d”,&choice);

switch(choice)

{

case 1: add record(fp);
getch();
break;

case 2: modify_record(fp);
getch();
break;

case 3: delete record(fp);
fclose(fp);

remove(“‘e:/c/subhendu.txt™);
rename(“e:/c/temporary.txt”,”’e:/c/subhendu.txt”);
break;

case 4: display_record(fp);
getch();
break;
case 0: printf(‘“\n\n *##*** EX]T #****>),
break;
default:printf(‘“\n\n Invalid choice”);
getch();
b
} while(choice);
fclose(fp);
getch();

;

/******************* Add new record ***********************/

void add record(FILE *fp)

{

EMP ¢;

do

{

clrscr();

fseek(fp,0,SEEK END);

printf(“‘\n\n Enter the Employee Name: *);
scanf(“%s”,e.name);

fflush(stdin);

printf(“\n\n Enter the Employee No: *);
scanf(“%d”,&e.no);

fflush(stdin);

printf(“\n\n Enter the Employee Salary:);
scanf(“%f”,&e.sal);

fflush(stdin);

fwrite(&e,sizeof(e),1,fp);
fseek(fp,0,SEEK SET);

printf(“‘\n\n Record is added successfully!”);
printf(“\n\n Do you want to add another record [Y|N]);
} while(toupper(getchar())!="N’);

;

/**************** Dlspaly Record >l<***********************/

void display record(FILE * fp)

{

EMP ¢;

int count=0;

printf(“\n\nEmployee No Name Salary”);

printf(“\n ”’); while(fread(&e,-
sizeof(e),1,fp))

Gizmofacts

38

{
printf(“\n\n %4d \t %20s \t %5.21”,e.no,e.name,e.sal);

count++;

if(!(count%10))
{
printf(“\n\n press any key to continue”);
getch();

j
j
j

/************** Delete a eXiSting reCOI'd ***************/
void delete record(FILE *fp)
{
FILE *tmp;
EMP ¢;
int empno;
tmp=fopen(‘“‘e:/c/temporary.txt”,”wb+");
if(tmp==NULL)
{
printf(“\n\n Unable to create a temporary file!”);
getch();
exit(1);
§
do
{
clrscr();
printf(“\n\n Enter searching Employee number: *);
scanf(“%d”,&empno);
fflush(stdin);
while(fread(&e,sizeof(e),1,fp))
{
if(e.no!=empno)
{
fwrite(&e,sizeof(e),1,tmp);
§
§

printf(“\n\n Searching element is deleted successfully!”);
printf(“\n\n Do you want to delete another record [Y|N] ™);
}while(toupper(getchar())!="N’);

fclose(tmp);
}

2 5 5 X5 6 6 6% % 3 25 25 S5 5 2 5 56 6 6k % %
/ Modity the Record /

Gizmofacts 39

void modify record(FILE *fp)
{
Int empno;
EMP e.el;
do
{
printf(“\n\n Give the employee number : *);
scanf(“%d”,&empno);
fflush(stdin);
fseek(fp,0,SEEK SET);
while(fread(&e,sizeof(e),1,fp))
{
printf(“\n%d :”,e.no);
if(e.no==empno)
{
el.no=e.no;
printf(“\n\n Give the new employee name : *);
scanf(“%s”,el.name);
fflush(stdin);
printf(“\n\n Give the new employee salary :”);
scanf(“%d”,&el.sal);
fflush(stdin);
fseek(fp,-(sizeof(el)),SEEK CUR);
fwrite(&el,sizeof(el),1,fp);
b

h
printf(*“\n\n The desired record is modified!”);

printf(“‘n\n Do you want to continue modification [Y|N] ”);
} while(toupper(getchar())!="N’);

;

Gizmofacts 40

Next Steps?

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav(@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

