
Gizmofacts 1

Gizmofacts

Kaustav Ghosh Dastidar

Python
Basics
Overview

www.gizmofacts.com

Gizmofacts 2

Python Basics Overview

Preface
This book is written to help you to learn Python programming quickly and effectively. If
you are new to programming, this book will help you straightforwardly understand complex
concepts. Each concept is demonstrated with carefully chosen examples to help you gain a
better understanding of the language from the basics to the advanced level.

If you are a skilled programmer, this book provides a solid foundation from which to explore
your knowledge of Python to the next levels and become a top-tier software engineer.

Each chapter will walk you through simple and practical approaches to learning the Python
programming language.

Python is consistently ranked as one of the world’s most popular programming languages.
It is a free, open-source programming language with a large community and extensive
support modules, as well as easy integration with web services, user-friendly data structures,
and graphical user interface (GUI)-based desktop applications. It is a popular programming
language that is used in machine learning and deep learning applications.

So, if you are just getting started with programming, Python could be a great choice. Now
a days Python is taught as the primary programming language in a wide range of schools,
colleges, and universities.

Why You should Learn Python?

If you’re thinking about learning Python but aren’t sure why here are ten reasons why you
should.

Data Science and Machine learning

This is the single most important reason why many programmers will be learning Python in
2023.

learning Python makes sense because it is quickly becoming the most popular programming
language, and there are powerful AI, Data Science, and Machine Learning APIs and libraries
available.

Gizmofacts 3

Python for Hacking

In the cyber security industry, programming is one of the most important ethical hacking tools.
After learning Python for cyber security, you will be able to identify any potential threat and
obtain additional cyber security training. This programming language comes in handy for
attack vectors, security flaws, and common attacks.

Python for Mobile Application Development

Kivy and Beware are two Python frameworks for developing mobile applications.
Python also has libraries and frameworks that allow you to write code once and run it on
multiple platforms (i.e. Android, iOS). This is known as cross-platform development.

Python for Graphics Design

As a developer, you can use Python to create web applications, games, and a variety of GUI
tools, among other things. Python Graphics User Interface (GUI) is extremely useful for a
wide range of projects.

You can use these technologies to create a one-of-a-kind, aesthetically pleasing, visually
appealing, highly interactive environment for your projects, as well as provide users with other
wonderful features.

Web scraping with python!

Consider the following scenario: you need to quickly retrieve a large amount of data from
websites. What if you didn’t go to each website and manually collect the data?

Web scraping is the solution. Web scraping simply makes this process easier and faster.

Python, as an object-oriented language, is one of the simplest to learn. Classes and objects in
Python are significantly easier to use than in any other language. Furthermore, many libraries
exist that make developing a web scraping tool in Python a breeze.

Python Basics Overview is essentially a multi-sensory learning experience that will assist
you in becoming a true Python programmer!

With Warm Regards,
Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

Gizmofacts 4

About The Author
The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Gizmofacts 5

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

Disclaimer

Gizmofacts 6

Python - Home...7-10

Python - Overview...11-12

Python - Environment Setup..13-18

Python - Basic Syntax ..19-25

Python - Comments...26-27

Python - Variables...28-32

Python - Data Types..33-42

Python - Operators..43-53

Next Steps?..54

Table of Content

Gizmofacts 7

Python - Home

Python Tutorial
This Python tutorial has been written for the beginners to help them understand the basic to
advanced concepts of Python Programming Language. After completing this tutorial, you will
find yourself at a great level of expertise in Python, from where you can take yourself to the
next levels to become a world class Software Engineer.

What is Python?

Python is a very popular general-purpose interpreted, interactive, object-oriented, and high-
level programming language. Python is dynamically-typed and garbage-collected programming
language. It was created by Guido van Rossum during 1985- 1990. Like Perl, Python source
code is also available under the GNU General Public License (GPL).

Python supports multiple programming paradigms, including Procedural, Object Oriented and
Functional programming language. Python design philosophy emphasizes code readability with the
use of significant indentation.

Python Jobs
Today, Python is very high in demand and all the major companies are looking for great
Python Programmers to develop websites, software components, and applications or to work
with Data Science, AI, and ML technologies. When we are developing this tutorial in 2022,
there is a high shortage of Python Programmers where as market demands more number of
Python Programmers due to it’s application in Machine Learning, Artificial Intelligence etc.

Today a Python Programmer with 3-5 years of experience is asking for around $150,000
annual package and this is the most demanding programming language in America. Though it
can vary depending on the location of the Job. It’s impossible to list all of the companies using
Python, to name a few big companies are:

•	 Google

•	 Intel

•	 NASA

•	 PayPal

•	 Facebook

•	 IBM

Gizmofacts 8

So, you could be the next potential employee for any of these major companies. We have

developed a great learning material for you to learn Python Programming which will help you

prepare for the technical interviews and certification exams based on Python. So, start learning

Python using this simple and effective tutorial from anywhere and anytime absolutely at your

pace.

Why to Learn Python?

Python is consistently rated as one of the world’s most popular programming languages. Python
is fairly easy to learn, so if you are starting to learn any programming language then Python
could be your great choice. Today various Schools, Colleges and Universities are teaching
Python as their primary programming language. There are many other good reasons which
makes Python as the top choice of any programmer:

•	 Python is Open Source which means its available free of cost.
•	 Python is simple and so easy to learn
•	 Python is versatile and can be used to create many different things.
•	 Python has powerful development libraries include AI, ML etc.
•	 Python is much in demand and ensures high salary

Python is a MUST for students and working professionals to become a great Software Engineer
specially when they are working in Web Development Domain. I will list down some of the
key advantages of learning Python:

•	 Python is Interpreted − Python is processed at runtime by the interpreter. You do not need to
compile your program before executing it. This is similar to PERL and PHP.

•	 Python is Interactive − You can actually sit at a Python prompt and interact with the interpreter
directly to write your programs.

•	 Python is Object-Oriented − Python supports Object-Oriented style or technique of programming
that encapsulates code within objects.

•	 Python is a Beginner’s Language − Python is a great language for the beginner-level programmers
and supports the development of a wide range of applications from simple text processing to
WWW browsers to games.

•	 Amazon

•	 Netflix

•	 Pinterest

•	 Uber

•	 Many more...

Gizmofacts 9

Python Online Compiler/Interpreter

We have provided Python Online Compiler/Interpreter which helps you to Edit and Execute
the code directly from your browser. Try to click the icon run button to run the following
Python code to print conventional “Hello, World!”.

Below code box allows you to change the value of the code. Try to change the value
inside print() and run it again to verify the result.

Careers with Python

If you know Python nicely, then you have a great career ahead. Here are just a few of the
career options where Python is a key skill:

•	 Game developer
•	 Web designer
•	 Python developer
•	 Full-stack developer
•	 Machine learning engineer
•	 Data scientist
•	 Data analyst
•	 Data engineer
•	 DevOps engineer
•	 Software engineer
•	 Many more other roles

Characteristics of Python

Following are important characteristics of Python Programming −

•	 It supports functional and structured programming methods as well as OOP.
•	 It can be used as a scripting language or can be compiled to byte-code for building large

applications.
•	 It provides very high-level dynamic data types and supports dynamic type checking.
•	 It supports automatic garbage collection.
•	 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

This is my first Python program.
This will print ‘Hello, World!’ as the output

print (“Hello, World!”);

Gizmofacts 10

Applications of Python

The latest release of Python is 3.x. As mentioned before, Python is one of the most widely used
language over the web. I’m going to list few of them here:

•	 Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax.
This allows the student to pick up the language quickly.

•	 Easy-to-read − Python code is more clearly defined and visible to the eyes.
•	 Easy-to-maintain − Python’s source code is fairly easy-to-maintain.
•	 A broad standard library − Python’s bulk of the library is very portable and cross-platform

compatible on UNIX, Windows, and Macintosh.
•	 Interactive Mode − Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.
•	 Portable − Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.
•	 Extendable − You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.
•	 Databases − Python provides interfaces to all major commercial databases.
•	 GUI Programming − Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and
the X Window system of Unix.

•	 Scalable − Python provides a better structure and support for large programs than shell
scripting.

Target Audience
This tutorial has been prepared for the beginners to help them understand the basics to
advanced concepts of Python programming language. After completing this tutorial, you will
find yourself at a great level of expertise in Python programming, from where you can take
yourself to the next levels.

Prerequisites
Although it is a beginners tutorial, we assume that the readers have a reasonable exposure to
any programming environment and knowledge of basic concepts such as variables, commands,
syntax, etc.

Gizmofacts 11

Python - Overview
Python is a high-level, interpreted, interactive and object-oriented scripting language. Python
is designed to be highly readable. It uses English keywords frequently where as other languag-
es use punctuation, and it has fewer syntactical constructions than other languages.

•	 Python is Interpreted − Python is processed at runtime by the interpreter. You do not need
to compile your program before executing it. This is similar to PERL and PHP.

•	 Python is Interactive − You can actually sit at a Python prompt and interact with the inter-
preter directly to write your programs.

•	 Python is Object-Oriented − Python supports Object-Oriented style or technique of pro-
gramming that encapsulates code within objects.

•	 Python is a Beginner’s Language − Python is a great language for the beginner-level pro-
grammers and supports the development of a wide range of applications from simple text
processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the
National Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,
SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General
Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van
Rossum still holds a vital role in directing its progress.

Python Features

Python’s features include −

•	 Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax.
This allows the student to pick up the language quickly.

•	 Easy-to-read − Python code is more clearly defined and visible to the eyes.

Gizmofacts 12

•	 Easy-to-maintain − Python’s source code is fairly easy-to-maintain.

•	 A broad standard library − Python’s bulk of the library is very portable and cross-plat-
form compatible on UNIX, Windows, and Macintosh.

•	 Interactive Mode − Python has support for an interactive mode which allows interactive
testing and debugging of snippets of code.

•	 Portable − Python can run on a wide variety of hardware platforms and has the same in-
terface on all platforms.

•	 Extendable − You can add low-level modules to the Python interpreter. These modules
enable programmers to add to or customize their tools to be more efficient.

•	 Databases − Python provides interfaces to all major commercial databases.

•	 GUI Programming − Python supports GUI applications that can be created and ported to
many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and
the X Window system of Unix.

•	 Scalable − Python provides a better structure and support for large programs than shell
scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed
below −

•	 It supports functional and structured programming methods as well as OOP.

•	 It can be used as a scripting language or can be compiled to byte-code for building large
applications.

•	 It provides very high-level dynamic data types and supports dynamic type checking.

•	 It supports automatic garbage collection.

•	 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Gizmofacts 13

Python is available on a wide variety of platforms including Linux and Mac OS X. Let’s
understand how to set up our Python environment.

Python has also been ported to the Java and .NET virtual machines

Local Environment Setup
Open a terminal window and type “python” to find out if it is already installed and which
version is installed. If Python is already installed then you will get a message something like
as follows:

•	 Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, etc.)
•	 Win 9x/NT/2000
•	 Macintosh (Intel, PPC, 68K)
•	 OS/2
•	 DOS (multiple versions)
•	 PalmOS
•	 Nokia mobile phones
•	 Windows CE
•	 Acorn/RISC OS
•	 BeOS
•	 Amiga
•	 VMS/OpenVMS
•	 QNX
•	 VxWorks
•	 Psion
•	 Python has also been ported to the Java and .NET virtual machines

Python - Environment Setup

$ python
Python 3.6.8 (default, Sep 10 2021, 09:13:53)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>>

Getting Python

Installing Python

The most up-to-date and current source code, binaries, documentation, news, etc., is available
on the official website of Python https://www.python.org/

You can download Python documentation from https://www.python.org/doc/. The documentation is available
in HTML, PDF, and PostScript formats.

Gizmofacts 14

Python distribution is available for a wide variety of platforms. You need to download only the
binary code applicable for your platform and install Python.

If the binary code for your platform is not available, you need a C compiler to compile the
source code manually. Compiling the source code offers more flexibility in terms of choice of
features that you require in your installation.

Here is a quick overview of installing Python on various platforms −

Unix and Linux Installation
Here are the simple steps to install Python on Unix/Linux machine.

Using Yum Command
Red Hat Enterprise Linux (RHEL 8) does not install Python 3 by default. We usually use yum
command on CentOS and other related variants. The procedure for installing Python-3 on
RHEL 8 is as follows:

Windows Installation
Here are the steps to install Python on Windows machine.

•	 Open a Web browser and go to https://www.python.org/downloads/.

•	 Follow the link to download zipped source code available for Unix/Linux.

•	 Download and extract files.

•	 Editing the Modules/Setup file if you want to customize some options.

$ run ./configure script
$ make
$ make install

$ sudo yum install python3

Now issue the following commands:

This installs Python at standard location /usr/local/bin and its libraries at /usr/local/lib/pythonXX
where XX is the version of Python.

•	 Open a Web browser and go to https://www.python.org/downloads

•	 Follow the link for the Windows installer python-XYZ.msi file where XYZ is the version
you need to install.

Gizmofacts 15

•	 To use this installer python-XYZ.msi, the Windows system must support Microsoft
Installer 2.0. Save the installer file to your local machine and then run it to find out if your
machine supports MSI.

•	 Run the downloaded file. This brings up the Python install wizard, which is really easy
to use. Just accept the default settings, wait until the install is finished, and you are done.

•	 n the csh shell − type setenv PATH “$PATH:/usr/local/bin/python” and press Enter.

•	 In the bash shell (Linux) − type export PATH=”$PATH:/usr/local/bin/python” and press
Enter.

•	 In the sh or ksh shell − type PATH=”$PATH:/usr/local/bin/python” and press Enter.

•	 Note − /usr/local/bin/python is the path of the Python directory

Recent Macs come with Python installed, but it may be several years out of date. See http://
www.python.org/download/mac/ for instructions on getting the current version along with
extra tools to support development on the Mac. For older Mac OS’s before Mac OS X 10.3
(released in 2003), MacPython is available.

Jack Jansen maintains it and you can have full access to the entire documentation at his website
− http://www.cwi.nl/~jack/macpython.html. You can find complete installation details for Mac
OS installation.

To add the Python directory to the path for a particular session in Unix −

Programs and other executable files can be in many directories, so operating systems provide
a search path that lists the directories that the OS searches for executables.

The path is stored in an environment variable, which is a named string maintained by the
operating system. This variable contains information available to the command shell and other
programs.

The path variable is named as PATH in Unix or Path in Windows (Unix is case sensitive;
Windows is not).

In Mac OS, the installer handles the path details. To invoke the Python interpreter from any
particular directory, you must add the Python directory to your path.

Macintosh Installation

Setting up PATH

Setting path at Unix/Linux

Gizmofacts 16

To add the Python directory to the path for a particular session in Windows −

At the command prompt − type path %path%;C:\Python and press Enter.

Note − C:\Python is the path of the Python directory

Here are important environment variables, which can be recognized by Python −

Setting path at Windows

Python Environment Variables

Running Python

There are three different ways to start Python −

Interactive Interpreter

You can start Python from Unix, DOS, or any other system that provides you a command-line
interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

1

2

3

4

PYTHONPATH
It has a role similar to PATH. This variable tells the Python interpreter where to locate the module
files imported into a program. It should include the Python source library directory and the
directories containing Python source code. PYTHONPATH is sometimes preset by the Python
installer.

PYTHONSTARTUP
It contains the path of an initialization file containing Python source code. It is executed every
time you start the interpreter. It is named as .pythonrc.py in Unix and it contains commands that
load utilities or modify PYTHONPATH.

PYTHONCASEOK
It is used in Windows to instruct Python to find the first case-insensitive match in an import
statement. Set this variable to any value to activate it.

PYTHONHOME
It is an alternative module search path. It is usually embedded in the PYTHONSTARTUP or
PYTHONPATH directories to make switching module libraries easy.

Sr.No. Variable & Description

Gizmofacts 17

$python # Unix/Linux
or
python% # Unix/Linux
or
C:> python # Windows/DOS

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C: >python script.py # Windows/DOS

Here is the list of all the available command line options −

Script from the Command-line
A Python script can be executed at command line by invoking the interpreter on your application,
as in the following −

Note − Be sure the file permission mode allows execution.

1

2

3

4

5

6

6

-d
It provides debug output.

-O
It generates optimized bytecode (resulting in .pyo files).

-S
Do not run import site to look for Python paths on startup.

-v
verbose output (detailed trace on import statements).

-X
disable class-based built-in exceptions (just use strings); obsolete starting with version 1.6.

-c cmd
run Python script sent in as cmd string

-c cmd
run Python script from given file

Sr.No. Option & Description

Gizmofacts 18

This is my first Python program.
This will print ‘Hello, World!’ as the output

print (“Hello, World!”);

•	 Unix − IDLE is the very first Unix IDE for Python.
•	 Windows − PythonWin is the first Windows interface for Python and is an IDE with a GUI.
•	 Macintosh − The Macintosh version of Python along with the IDLE IDE is available from the

main website, downloadable as either MacBinary or BinHex’d files.

Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a
GUI application on your system that supports Python.

If you are not able to set up the environment properly, then you can take help from your system
admin. Make sure the Python environment is properly set up and working perfectly fine.

We have provided Python Online Compiler/Interpreter which helps you to Edit and Execute
the code directly from your browser. Try to click the icon run button to run the following
Python code to print conventional “Hello, World!”.

Below code box allows you to change the value of the code. Try to change the value inside print() and
run it again to verify the result.

Gizmofacts 19

Python - Basic Syntax

The Python syntax defines a set of rules that are used to create Python statements while writing
a Python Program. The Python Programming Language Syntax has many similarities to Perl,
C, and Java Programming Languages. However, there are some definite differences between
the languages.

First Python Program

Let us execute a Python “Hello, World!” Programs in different modes of programming.

Python - Interactive Mode Programming

We can invoke a Python interpreter from command line by typing python at the command
prompt as following −

Here >>> denotes a Python Command Prompt where you can type your commands. Let’s type
the following text at the Python prompt and press the Enter −

If you are running older version of Python, like Python 2.4.x, then you would need to use print
statement without parenthesis as in print “Hello, World!”. However in Python version 3.x,
this produces the following result −

Python - Script Mode Programming

We can invoke the Python interpreter with a script parameter which begins the execution of
the script and continues until the script is finished. When the script is finished, the interpreter
is no longer active.

$ python
Python 3.6.8 (default, Sep 10 2021, 09:13:53)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>>

>>> print (“Hello, World!”)

Hello, World!

Gizmofacts 20

$ chmod +x test.py # This is to make file executable
$./test.py

#!/usr/bin/python

print (“Hello, World!”)

Hello, World!

$ python test.py

Hello, World!

print (“Hello, World!”)

Let us write a simple Python program in a script which is simple text file. Python files have
extension .py. Type the following source code in a test.py file −

We assume that you have Python interpreter path set in PATH variable. Now, let’s try to run
this program as follows −

This produces the following result −

Let us try another way to execute a Python script. Here is the modified test.py file −

We assume that you have Python interpreter available in /usr/bin directory. Now, try to run this
program as follows −

This produces the following result −

Python Identifiers
A Python identifier is a name used to identify a variable, function, class, module or other ob-
ject. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or
more letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers.

Python is a case sensitive programming language. Thus, Manpower and manpower
are two different identifiers in Python.

Gizmofacts 21

Here are naming conventions for Python identifiers −
•	 Python Class names start with an uppercase letter. All other identifiers start with a lowercase

letter.

•	 Starting an identifier with a single leading underscore indicates that the identifier is private
identifier.

•	 Starting an identifier with two leading underscores indicates a strongly private identifier.

•	 If the identifier also ends with two trailing underscores, the identifier is a language-defined
special name.

Python Reserved Words
The following list shows the Python keywords. These are reserved words and you cannot use
them as constant or variable or any other identifier names. All the Python keywords contain
lowercase letters only.

and

break

def

else

finally

global

in

None

or

return

while

as

class

del

except

for

if

is

nonlocal

pass

True

with

assert

continue

elif

False

from

import

lambda

not

raise

try

yield

Python Lines and Indentation
Python programming provides no braces to indicate blocks of code for class and function
definitions or flow control. Blocks of code are denoted by line indentation, which is rigidly
enforced.
The number of spaces in the indentation is variable, but all statements within the block must
be indented the same amount. For example −

if True:
 print (“True”)
else:
 print (“False”)

Gizmofacts 22

However, the following block generates an error −

Thus, in Python all the continuous lines indented with same number of spaces would form a
block. The following example has various statement blocks −

if True:
print (“Answer”)
print (“True”)
else:
print (“Answer”)
print (“False”)

import sys

try:
 # open file stream
 file = open(file_name, “w”)
except IOError:
 print “There was an error writing to”, file_name
 sys.exit()
print “Enter ‘”, file_finish,
print “’ When finished”
while file_text != file_finish:
 file_text = raw_input(“Enter text: “)
 if file_text == file_finish:
 # close the file
 file.close
 break
 file.write(file_text)
 file.write(“\n”)
file.close()
file_name = raw_input(“Enter filename: “)
if len(file_name) == 0:
 print “Next time please enter something”
 sys.exit()
try:
 file = open(file_name, “r”)
except IOError:
 print “There was an error reading file”
 sys.exit()
file_text = file.read()
file.close()
print file_text

Do not try to understand the logic at this point of time. Just make sure you understood various
blocks even if they are without braces.

Gizmofacts 23

Python Multi-Line Statements
Statements in Python typically end with a new line. Python does, however, allow the use of the
line continuation character (\) to denote that the line should continue. For example −

Statements contained within the [], {}, or () brackets do not need to use the line continuation
character. For example following statement works well in Python −

Python accepts single (‘), double (“) and triple (‘’’ or “””) quotes to denote string literals, as
long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the following
are legal −

A comment is a programmer-readable explanation or annotation in the Python source code.
They are added with the purpose of making the source code easier for humans to understand,
and are ignored by Python interpreter

Just like most modern languages, Python supports single-line (or end-of-line) and multi-line
(block) comments. Python comments are very much similar to the comments available in PHP,
BASH and Perl Programming languages.

A hash sign (#) that is not inside a string literal begins a comment. All characters after the # and
up to the end of the physical line are part of the comment and the Python interpreter ignores
them.

Quotations in Python

Comments in Python

total = item_one + \
 item_two + \
 item_three

word = ‘word’

sentence = “This is a sentence.”

paragraph = “””This is a paragraph. It is
 made up of multiple lines and sentences.”””

days = [‘Monday’, ‘Tuesday’, ‘Wednesday’,
 ‘Thursday’, ‘Friday’]

First comment
print (“Hello, World!”) # Second comment

Gizmofacts 24

This produces the following result −

You can type a comment on the same line after a statement or expression −

You can comment multiple lines as follows −

Following triple-quoted string is also ignored by Python interpreter and can be used as a
multiline comments:

A line containing only whitespace, possibly with a comment, is known as a blank line and
Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a mul-
tiline statement.

The following line of the program displays the prompt, the statement saying “Press the enter
key to exit”, and waits for the user to take action −

Here, “\n\n” is used to create two new lines before displaying the actual line. Once the user
presses the key, the program ends. This is a nice trick to keep a console window open until the
user is done with an application.

Hello, World!

name = “Madisetti” # This is again comment

This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.

‘’’
This is a multiline
comment.
‘’’

#!/usr/bin/python

raw_input(“\n\nPress the enter key to exit.”)

Using Blank Lines in Python Programs

Waiting for the User

Gizmofacts 25

Multiple Statements on a Single Line

Multiple Statement Groups as Suites

Command Line Arguments in Python

The semicolon (;) allows multiple statements on the single line given that neither statement
starts a new code block. Here is a sample snip using the semicolon −

A group of individual statements, which make a single code block are called suites in Python.
Compound or complex statements, such as if, while, def, and class require a header line and a
suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are
followed by one or more lines which make up the suite. For example −

Many programs can be run to provide you with some basic information about how they should
be run. Python enables you to do this with -h −

You can also program your script in such a way that it should accept various options. Command
Line Arguments is an advanced topic and should be studied a bit later once you have gone
through rest of the Python concepts.

import sys; x = ‘foo’; sys.stdout.write(x + ‘\n’)

if expression :
 suite
elif expression :
 suite
else :
 suite

$ python -h
usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)
-d : debug output from parser (also PYTHONDEBUG=x)
-E : ignore environment variables (such as PYTHONPATH)
-h : print this help message and exit

[etc.]

Gizmofacts 26

This is a single line comment in python

print (“Hello, World!”)

Python - Comments
Python comments are programmer-readable explanation or annotations in the Python source
code. They are added with the purpose of making the source code easier for humans to under-
stand, and are ignored by Python interpreter. Comments enhance the readability of the code
and help the programmers to understand the code very carefully.

Just like most modern languages, Python supports single-line (or end-of-line) and multi-line
(block) comments. Python comments are very much similar to the comments available in PHP,
BASH and Perl Programming languages.

There are three types of comments available in Python

Single Line Comments

Docstring Comments

Example

A hash sign (#) that is not inside a string literal begins a comment. All characters after the
and up to the end of the physical line are part of the comment and the Python interpreter
ignores them.

Python docstrings provide a convenient way to provide a help documentation with Python
modules, functions, classes, and methods. The docstring is then made available via the __
doc__ attribute.

Following is an example of a single line comment in Python:

This produces the following result −

Hello, World!

•	 Single line Comments

•	 Multiline Comments

•	 Docstring Comments

Gizmofacts 27

def add(a, b):
 “””Function to add the value of a and b”””
 return a+b

print(add.__doc__)

Function to add the value of a and b

This produces the following result −

Gizmofacts 28

counter = 100 # Creates an integer variable
miles = 1000.0 # Creates a floating point variable
name = “Zara Ali” # Creates a string variable

counter = 100 # Creates an integer variable
miles = 1000.0 # Creates a floating point variable
name = “Zara Ali” # Creates a string variable

print (counter)
print (miles)
print (name)

Python - Variables

Python variables are the reserved memory locations used to store values with in a Python
Program. This means that when you create a variable you reserve some space in the memory.

Based on the data type of a variable, Python interpreter allocates memory and decides what
can be stored in the reserved memory. Therefore, by assigning different data types to Python
variables, you can store integers, decimals or characters in these variables.

Creating Python Variables
Python variables do not need explicit declaration to reserve memory space or you can say to
create a variable. A Python variable is created automatically when you assign a value to it. The
equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right
of the = operator is the value stored in the variable. For example −

Once we create a Python variable and assign a value to it, we can print it using print() function.
Following is the extension of previous example and shows how to print different variables in
Python:

Here, 100, 1000.0 and “Zara Ali” are the values assigned to counter, miles, and name variables,
respectively. When running the above Python program, this produces the following result −

Printing Python Variables

100
1000.0
Zara Ali

Gizmofacts 29

del var1[,var2[,var3[....,varN]]]]

del var
del var_a, var_b

Delete a Variable
You can delete the reference to a number object by using the del statement. The syntax of the
del statement is −

You can delete a single object or multiple objects by using the del statement. For example −

counter = 100
print (counter)

del counter
print (counter)

100
Traceback (most recent call last):
 File “main.py”, line 7, in <module>
 print (counter)
NameError: name ‘counter’ is not defined

Following examples shows how we can delete a variable and if we try to use a deleted variable
then Python interpreter will throw an error:

This will produce the following result:

Python allows you to assign a single value to several variables simultaneously which means
you can create multiple variables at a time. For example −

Example

Multiple Assignment

a = b = c = 100

print (a)
print (b)

print (c)

Gizmofacts 30

100
100
100

a,b,c = 1,2,”Zara Ali”

print (a)
print (b)
print (c)

1
2
Zara Ali

This produces the following result:

Here, an integer object is created with the value 1, and all three variables are assigned to
the same memory location. You can also assign multiple objects to multiple variables. For
example −

This produces the following result:

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,
and one string object with the value “Zara Ali” is assigned to the variable c.

Every Python variable should have a unique name like a, b, c. A variable name can be meaningful
like color, age, name etc. There are certain rules which should be taken care while naming a
Python variable:

•	 A variable name must start with a letter or the underscore character

•	 A variable name cannot start with a number or any special character like $, (, * % etc.

•	 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

•	 Python variable names are case-sensitive which means Name and NAME are two different variables in

Python.

•	 Python reserved keywords cannot be used naming the variable.

Python Variable Names

Example
Following are valid Python variable names:

Gizmofacts 31

Example

This will produce the following result:

counter = 100
_count = 100
name1 = “Zara”
name2 = “Nuha”
Age = 20
zara_salary = 100000

print (counter)
print (_count)
print (name1)
print (name2)
print (Age)
print (zara_salary)

100
100
Zara
Nuha
20
100000

1counter = 100
$_count = 100
zara-salary = 100000
print (1counter)
print ($count)
print (zara-salary)

File “main.py”, line 3
 1counter = 100
 ^
SyntaxError: invalid syntax

Following are invalid Python variable names:

This will produce the following result:

Python Local Variable
Python Local Variables are defined inside a function. We can not access variable outside the
function.

Gizmofacts 32

def sum(x,y):
 sum = x + y
 return sum
print(sum(5, 10))

x = 5
y = 10
def sum():
 sum = x + y
 return sum
print(sum())

15

15

Python Global Variable

A Python functions is a piece of reusable code and you will learn more about function in Python -
Functions tutorial.

Following is an example to show the usage of local variables:

Any variable created outside a function can be accessed within any function and so they have
global scope. Following is an example of global variables:

This will produce the following result:

Gizmofacts 33

Python - Data Types
Python Data Types are used to define the type of a variable. It defines what type of data we are
going to store in a variable. The data stored in memory can be of many types. For example,
a person’s age is stored as a numeric value and his or her address is stored as alphanumeric
characters.

Python has various built-in data types which we will discuss with in this tutorial:
•	 Numeric - int, float, complex

•	 String - str

•	 Sequence - list, tuple, range

•	 Binary - bytes, bytearray, memoryview

•	 Mapping - dict

•	 Boolean - bool

•	 Set - set, frozenset

•	 None - NoneType

Python Numeric Data Type

Python numeric data types store numeric values. Number objects are created when you assign
a value to them. For example −

Python supports four different numerical types −

var1 = 1
var2 = 10
var3 = 10.023

•	 int (signed integers)
•	 long (long integers, they can also be represented in octal and hexadecimal)
•	 float (floating point real values)
•	 complex (complex numbers)

Examples
Here are some examples of numbers −

Gizmofacts 34

integer variable.
a=100
print(“The type of variable having value”, a, “ is “, type(a))

float variable.
b=20.345
print(“The type of variable having value”, b, “ is “, type(b))

complex variable.
c=10+3j
print(“The type of variable having value”, c, “ is “, type(c))

 int	 long	 float	 complex
 10	 51924361L	 0.0	 3.14j
 100	 -0x19323L 	 15.20	 45.j
 -786	 0122L	 -21.9	 9.322e-36j
 080	 0xDEFABCECBDAECBFBAEl	 32.3+e18	 .876j

 -0490	 535633629843L	 -90.	 -.6545+0J

 -0x260	 -052318172735L	 -32.54e100	 3e+26J

 0x69	 -4721885298529L 	 70.2-E12	 4.53e-7j

•	 Python allows you to use a lowercase l with long, but it is recommended that you use
only an uppercase L to avoid confusion with the number 1. Python displays long integers
with an uppercase L.

•	 A complex number consists of an ordered pair of real floating-point numbers denoted by
x + yj, where x and y are the real numbers and j is the imaginary unit.

Following is an example to show the usage of Integer, Float and Complex numbers:

Example

Python String Data Type
Python Strings are identified as a contiguous set of characters represented in the quotation
marks. Python allows for either pairs of single or double quotes. Subsets of strings can be taken
using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of the string and
working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition
operator in Python. For example −

Gizmofacts 35

str = ‘Hello World!’

print (str) # Prints complete string
print (str[0]) # Prints first character of the string
print (str[2:5]) # Prints characters starting from 3rd to 5th
print (str[2:]) # Prints string starting from 3rd character
print (str * 2) # Prints string two times
print (str + “TEST”) # Prints concatenated string

Hello World!
H
llo
llo World!
Hello World!Hello World!
Hello World!TEST

list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]
tinylist = [123, ‘john’]

print (list) # Prints complete list
print (list[0]) # Prints first element of the list
print (list[1:3]) # Prints elements starting from 2nd till 3rd
print (list[2:]) # Prints elements starting from 3rd element
print (tinylist * 2) # Prints list two times
print (list + tinylist) # Prints concatenated lists

This will produce the following result −

Python List Data Type
Python Lists are the most versatile compound data types. A Python list contains items separated
by commas and enclosed within square brackets ([]). To some extent, Python lists are similar
to arrays in C. One difference between them is that all the items belonging to a Python list can
be of different data type where as C array can store elements related to a particular data type.

The values stored in a Python list can be accessed using the slice operator ([] and [:]) with
indexes starting at 0 in the beginning of the list and working their way to end -1. The plus
(+) sign is the list concatenation operator, and the asterisk (*) is the repetition operator. For
example −

Gizmofacts 36

[‘abcd’, 786, 2.23, ‘john’, 70.2]
abcd
[786, 2.23]
[2.23, ‘john’, 70.2]
[123, ‘john’, 123, ‘john’]
[‘abcd’, 786, 2.23, ‘john’, 70.2, 123, ‘john’]

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)
tinytuple = (123, ‘john’)

print (tuple) # Prints the complete tuple
print (tuple[0]) # Prints first element of the tuple
print (tuple[1:3]) # Prints elements of the tuple starting from 2nd till 3rd
print (tuple[2:]) # Prints elements of the tuple starting from 3rd element
print (tinytuple * 2) # Prints the contents of the tuple twice
print (tuple + tinytuple) # Prints concatenated tuples

(‘abcd’, 786, 2.23, ‘john’, 70.2)
abcd
(786, 2.23)
(2.23, ‘john’, 70.2)
(123, ‘john’, 123, ‘john’)
(‘abcd’, 786, 2.23, ‘john’, 70.2, 123, ‘john’)

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)
list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]
tuple[2] = 1000 # Invalid syntax with tuple
list[2] = 1000 # Valid syntax with list

This produce the following result −

Python Tuple Data Type

Python tuple is another sequence data type that is similar to a list. A Python tuple consists of
a number of values separated by commas. Unlike lists, however, tuples are enclosed within
parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and their
elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot
be updated. Tuples can be thought of as read-only lists. For example −

This produce the following result −

The following code is invalid with tuple, because we attempted to update a tuple, which is not
allowed. Similar case is possible with lists −

Gizmofacts 37

Python Ranges

Python range() is an in-built function in Python which returns a sequence of numbers starting
from 0 and increments to 1 until it reaches a specified number.

We use range() function with for and while loop to generate a sequence of numbers. Following
is the syntax of the function:

range(start, stop, step)

Here is the description of the parameters used:

•	 start: Integer number to specify starting position, (Its optional, Default: 0)

•	 stop: Integer number to specify starting position (It’s mandatory)

•	 step: Integer number to specify increment, (Its optional, Default: 1)

Examples
Following is a program which uses for loop to print number from 0 to 4 −

This produce the following result −

Now let’s modify above program to print the number starting from 1 instead of 0:

This produce the following result −

Again, let’s modify the program to print the number starting from 1 but with an increment of
2 instead of 1:

for i in range(5):
 print(i)

for i in range(1, 5):
 print(i)

0
1
2
3
4

1
2
3
4

Gizmofacts 38

for i in range(1, 5, 2):
 print(i)

1
3

dict = {}
dict[‘one’] = “This is one”
dict[2] = “This is two”

tinydict = {‘name’: ‘john’,’code’:6734, ‘dept’: ‘sales’}

print (dict[‘one’]) # Prints value for ‘one’ key
print (dict[2]) # Prints value for 2 key
print (tinydict) # Prints complete dictionary
print (tinydict.keys()) # Prints all the keys
print (tinydict.values()) # Prints all the values

This is one
This is two
{‘dept’: ‘sales’, ‘code’: 6734, ‘name’: ‘john’}
[‘dept’, ‘code’, ‘name’]
[‘sales’, 6734, ‘john’]

This produce the following result −

This produce the following result −

Python dictionaries have no concept of order among elements. It is incorrect to say that the
elements are “out of order”; they are simply unordered.

Python Dictionary
Python dictionaries are kind of hash table type. They work like associative arrays or hashes
found in Perl and consist of key-value pairs. A dictionary key can be almost any Python type,
but are usually numbers or strings. Values, on the other hand, can be any arbitrary Python ob-
ject.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using
square braces ([]). For example −

Python Boolean Data Types
Python boolean type is one of built-in data types which represents one of the two values either
True or False. Python bool() function allows you to evaluate the value of any expression and
returns either True or False based on the expression.

Gizmofacts 39

Examples
Following is a program which prints the value of boolean variables a and b −

This produce the following result −

Following is another program which evaluates the expressions and prints the return values:

a = True
display the value of a
print(a)

display the data type of a
print(type(a))

False
False
False
False
False
True

Returns false as a is not equal to b
a = 2
b = 4
print(bool(a==b))

Following also prints the same
print(a==b)

Returns False as a is None
a = None
print(bool(a))

Returns false as a is an empty sequence
a = ()
print(bool(a))

Returns false as a is 0
a = 0.0
print(bool(a))

Returns false as a is 10
a = 10
print(bool(a))

true
<class ‘bool’>

This produce the following result −

Gizmofacts 40

a = int(1) # a will be 1
b = int(2.2) # b will be 2
c = int(“3”) # c will be 3

print (a)
print (b)
print (c)

1
2
3
print (c)

1.0
2.2
3.3

a = str(1) # a will be “1”
b = str(2.2) # b will be “2.2”

a = float(1) # a will be 1.0
b = float(2.2) # b will be 2.2
c = float(“3.3”) # c will be 3.3

print (a)
print (b)
print (c)

Python Data Type Conversion
Sometimes, you may need to perform conversions between the built-in data types. To convert
data between different Python data types, you simply use the type name as a function.

Following is an example to convert number, float and string into integer data type:

This produce the following result −

Following is an example to convert number, float and string into float data type:

This produce the following result −

Following is an example to convert number, float and string into string data type:

Conversion to int

Conversion to float

Conversion to string

Gizmofacts 41

c = str(“3.3”) # c will be “3.3”

print (a)
print (b)
print (c)

1
2.2
3.3

This produce the following result −

Data Type Conversion Functions
There are several built-in functions to perform conversion from one data type to another. These
functions return a new object representing the converted value.

1

2

3

4

5

6

Sr.No. Function & Description

int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

float(x)

Converts x to a floating-point number.

complex(real [,imag])

Creates a complex number.

str(x)

Converts object x to a string representation.

repr(x)

Converts object x to an expression string.

Gizmofacts 42

7

8

9

10

11

12

13

14

15

16

17

eval(str)

Evaluates a string and returns an object.

tuple(s)

Converts s to a tuple.

list(s)

Converts s to a list.

set(s)

Converts s to a set.

dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s)

Converts s to a frozen set.

chr(x)

Converts an integer to a character.

unichr(x)

Converts an integer to a Unicode character.

ord(x)

Converts a single character to its integer value.

hex(x)

Converts an integer to a hexadecimal string.

oct(x)

Converts an integer to an octal string.

Gizmofacts 43

Python - Operators
Python operators are the constructs which can manipulate the value of operands. These are
symbols used for the purpose of logical, arithmetic and various other operations.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.
In this tutorial, we will study different types of Python operators.

Python language supports the following types of operators.

Let us have a quick look on all these operators one by one.

Python arithmetic operators are used to perform mathematical operations on numerical values.
These operations are Addition, Subtraction, Multiplication, Division, Modulus, Expoents and
Floor Division.

Types of Python Operators

Python Arithmetic Operators

•	 Arithmetic Operators
•	 Comparison (Relational) Operators
•	 Assignment Operators
•	 Logical Operators
•	 Bitwise Operators
•	 Membership Operators
•	 Identity Operators

+	 Addition	 10 + 20 = 30

-	 Subtraction	 20 – 10 = 10

*	 Multiplication	 10 * 20 = 200

/	 Division	 20 / 10 = 2

%	 Modulus	 22 % 10 = 2

**	 Exponent	 4**2 = 16

//	 Floor Division	 9//2 = 4

Operator Name Example

Gizmofacts 44

Following is an example which shows all the above operations:

This produce the following result −

Python comparison operators compare the values on either sides of them and decide the relation
among them. They are also called relational operators. These operators are equal, not equal,
greater than, less than, greater than or equal to and less than or equal to.

==	 Equal	 4 == 5 is not true.

Example

a = 21
b = 10

Addition
print (“a + b : “, a + b)

Subtraction
print (“a - b : “, a - b)

Multiplication
print (“a * b : “, a * b)

Division
print (“a / b : “, a / b)

Modulus
print (“a % b : “, a % b)

Exponent
print (“a ** b : “, a ** b)

Floor Division
print (“a // b : “, a // b)

a + b : 31
a - b : 11
a * b : 210
a / b : 2.1
a % b : 1
a ** b : 16679880978201
a // b : 2

Python Comparison Operators

Operator Name Example

Gizmofacts 45

!=	 Not Equal	 4 != 5 is true.

>	 Greater Than	 4 > 5 is not true.

<	 Less Than	 4 < 5 is true.

>=	 Greater than or Equal to	4 >= 5 is not true.

<=	 Less than or Equal to	 4 <= 5 is true.

Example
Following is an example which shows all the above comparison operations:

This produce the following result −

a = 4
b = 5

Equal
print (“a == b : “, a == b)

Not Equal
print (“a != b :
 “, a != b)

Greater Than
print (“a > b : “, a > b)

Less Than
print (“a < b : “, a < b)

Greater Than or Equal to
print (“a >= b : “, a >= b)

Less Than or Equal to
print (“a <= b : “, a <= b)

a == b : False
a != b : True
a > b : False
a < b : True
a >= b : False
a <= b : True

Gizmofacts 46

Example
Following is an example which shows all the above assignment operations:

Assignment Operator
a = 10

Addition Assignment
a += 5
print (“a += 5 : “, a)

Subtraction Assignment
a -= 5
print (“a -= 5 : “, a)

Multiplication Assignment
a *= 5
print (“a *= 5 : “, a)

Python Assignment Operators

Python assignment operators are used to assign values to variables. These operators include
simple assignment operator, addition assign, subtraction assign, multiplication assign, division
and assign operators etc.

Operator Name Example

=	 Assignment Operator	a = 10

+=	 Addition Assignment	 a += 5 (Same as a = a + 5)

-=	 Subtraction Assignment	 a -= 5 (Same as a = a - 5)

*=	 Multiplication Assignment	 a *= 5 (Same as a = a * 5)

/=	 Division Assignment	 a /= 5 (Same as a = a / 5)

/=	 Division Assignment	 a /= 5 (Same as a = a / 5)

**=	 Exponent Assignment	 a **= 2 (Same as a = a ** 2)

//=	 Floor Division Assignment	 a //= 3 (Same as a = a // 3)

Gizmofacts 47

Division Assignment
a /= 5
print (“a /= 5 : “,a)

Remainder Assignment
a %= 3
print (“a %= 3 : “, a)

Exponent Assignment
a **= 2
print (“a **= 2 : “, a)

Floor Division Assignment
a //= 3
print (“a //= 3 : “, a)

a += 5 : 105
a -= 5 : 100
a *= 5 : 500
a /= 5 : 100.0
a %= 3 : 1.0
a **= 2 : 1.0
a //= 3 : 0.0

This produce the following result −

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b
= 13; Now in the binary format their values will be 0011 1100 and 0000 1101 respectively.
Following table lists out the bitwise operators supported by Python language with an example
each in those, we use the above two variables (a and b) as operands −

a = 0011 1100

b = 0000 1101

a&b = 12 (0000 1100)

a|b = 61 (0011 1101)

a^b = 49 (0011 0001)

~a = -61 (1100 0011)

a << 2 = 240 (1111 0000)

Python Bitwise Operators

Gizmofacts 48

a>>2 = 15 (0000 1111)

There are following Bitwise operators supported by Python language

Example
Following is an example which shows all the above bitwise operations:

a = 60 # 60 = 0011 1100
b = 13 # 13 = 0000 1101

Binary AND
c = a & b # 12 = 0000 1100
print (“a & b : “, c)

Binary OR
c = a | b # 61 = 0011 1101
print (“a | b : “, c)

Binary XOR
c = a ^ b # 49 = 0011 0001
print (“a ^ b : “, c)

Binary Ones Complement
c = ~a; # -61 = 1100 0011
print (“~a : “, c)

Binary Left Shift
c = a << 2; # 240 = 1111 0000
print (“a << 2 : “, c)

&	 Binary AND	 Sets each bit to 1 if both bits are 1

|	 Binary OR	 Sets each bit to 1 if one of two bits is 1

^	 Binary XOR	 Sets each bit to 1 if only one of two
 bits is 1

~	 Binary Ones Inverts all the bits
 Complement	

<<	 Binary Left Shift	 Shift left by pushing zeros in from the
 right and let the leftmost bits fall off

>>	 Binary Right Shift	 Shift right by pushing copies of the
 leftmost bit in from the left,
 and let the rightmost bits fall off

Operator Name Example

Gizmofacts 49

Binary Right Shift
c = a >> 2; # 15 = 0000 1111
print (“a >> 2 : “, c)

a & b : 12
a | b : 61
a ^ b : 49
~a : -61
a >> 2 : 240
a >> 2 : 15

This produce the following result −

Python Logical Operators
There are following logical operators supported by Python language. Assume variable a holds
10 and variable b holds 20 then

Python’s membership operators test for membership in a sequence, such as strings, lists, or
tuples. There are two membership operators as explained below −

Operator Description Example
and
Logical
 AND

If both the operands are true then
condition becomes true. (a and b) is true.

If any of the two operands are non-zero
then condition becomes true. (a or b) is true.

sed to reverse the logical state of its
operand. Not(a and b) is false.

or
Logical
OR
not
Logical
NOT

Python Membership Operators

Operator Description Example
in Evaluates to true if it finds a variable

in the specified sequence and false
otherwise.

x in y, here in results in a 1 if x is a mem-
ber of sequence y.

Evaluates to true if it does not finds a
variable in the specified sequence and
false otherwise.

x not in y, here not in results in a 1 if x is
not a member of sequence y.

not in

Gizmofacts 50

Line 1 - a is not available in the given list
Line 2 - b is not available in the given list
Line 3 - a is available in the given list

#!/usr/bin/python

a = 10
b = 20
list = [1, 2, 3, 4, 5];

if (a in list):
 print “Line 1 - a is available in the given list”
else:
 print “Line 1 - a is not available in the given list”

if (b not in list):
 print “Line 2 - b is not available in the given list”
else:
 print “Line 2 - b is available in the given list”

a = 2
if (a in list):
 print “Line 3 - a is available in the given list”
else:
 print “Line 3 - a is not available in the given list”

When you execute the above program it produces the following result −

Example

Python Identity Operators

Example

Operator Description Example
is Evaluates to true if the variables on

either side of the operator point to the
same object and false otherwise

x is y, here is results in 1 if id(x) equals
id(y).

Evaluates to false if the variables on
either side of the operator point to the
same object and true otherwise.

x is not y, here is not results in 1 if id(x)
is not equal to id(y).

is not

Identity operators compare the memory locations of two objects. There are two Identity operators explained
below −

Gizmofacts 51

Python Operators Precedence
The following table lists all operators from highest precedence to lowest.

**	 Exponentiation (raise to the power)

~ + -	 Complement, unary plus and minus (method names for the last two are +@ and -@)

* / % //	 Multiply, divide, modulo and floor division

>> <<	 Right and left bitwise shift

&	 Bitwise ‘AND’td>

#!/usr/bin/python

a = 20
b = 20

if (a is b):
 print “Line 1 - a and b have same identity”
else:
 print “Line 1 - a and b do not have same identity”

if (id(a) == id(b)):
 print “Line 2 - a and b have same identity”
else:
 print “Line 2 - a and b do not have same identity”

b = 30
if (a is b):
 print “Line 3 - a and b have same identity”
else:
 print “Line 3 - a and b do not have same identity”

if (a is not b):
 print “Line 4 - a and b do not have same identity”
else:
 print “Line 4 - a and b have same identity”

Line 1 - a and b have same identity
Line 2 - a and b have same identity
Line 3 - a and b do not have same identity
Line 4 - a and b do not have same identity

When you execute the above program it produces the following result −

Operator Description

Gizmofacts 52

<= < > >=	 Comparison operators

^ |	 Bitwise exclusive `OR’ and regular `OR’

<> == !=	 Equality operators

= %= /= //= -= += *= **=	 Assignment operators

is is not	 Identity operators

in not in	 Membership operators

not or and	 Logical operators

#!/usr/bin/python

a = 20
b = 10
c = 15
d = 5
e = 0

e = (a + b) * c / d #(30 * 15) / 5
print “Value of (a + b) * c / d is “, e

e = ((a + b) * c) / d # (30 * 15) / 5
print “Value of ((a + b) * c) / d is “, e

e = (a + b) * (c / d); # (30) * (15/5)
print “Value of (a + b) * (c / d) is “, e

e = a + (b * c) / d; # 20 + (150/5)
print “Value of a + (b * c) / d is “, e

When you execute the above program, it produces the following result −

Operator precedence affects how an expression is evaluated.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher pre-
cedence than +, so it first multiplies 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom.

Example

Value of (a + b) * c / d is 90
Value of ((a + b) * c) / d is 90
Value of (a + b) * (c / d) is 90
Value of a + (b * c) / d is 50

Gizmofacts 53

<> == !=

Equality operators

= %= /= //= -= += *= **=

Assignment operators

is is not

Identity operators

in not in

Membership operators

not or and

Logical operators

9

10

11

12

13

Sr.No. Operator & Description
1

2

3

**

Exponentiation (raise to the power)

~ + -

Complement, unary plus and minus (method names for the last two are +@ and -@)

* / % //

Multiply, divide, modulo and floor division

+ -

Addition and subtraction

>> <<

Right and left bitwise shift

&

Bitwise ‘AND’

^ |

Bitwise exclusive `OR’ and regular `OR’

<= < > >=

Comparison operators

4

7

5

8

6

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

Next Steps?

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

