GIZMOFACTS

PYTHON
COLLECTION

Kaustav Ghosh
Dastidar

www.gizmofacts.com

Python Collection

Preface

Always wanted to have a go at programming? No more excuses, Python is the ideal way
to get started!

Python is an excellent programming language for both novices and experts. It is designed
with code readability in mind, making it an excellent choice for beginners learning
various programming concepts.

The language is widely used and has many libraries, allowing programmers to accomplish
a lot with little code.

I hope you enjoyed my previous three modules, Python Fundamentals, Python Decision
Making and Controls & Python Numbers and Strings. If not, please proceed on rush for
a quick revision. Here is the fourth module and the most important topics I will cover
here 1.e. Python Lists and Tuples.

List 1s an ordered collection of elements. By ordered we mean that the elements are
stored one after the other. Lists are mutable this means that the content of the list can be
modified by adding, removing or changing objects during the execution of the program.

Just like list tuple is also an ordered collection of elements. However, unlike lists tuples
are immutable. Which means that once a tuple is created, we cannot add, delete, modify

the elements of the tuple.

This book is written to help you to learn Python programming quickly and effectively.

With Warm Regards,

Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

About The Author

The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Disclaimer

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Table of Content

PYthON LISES ..ccciiiiiiiiisiss 6-22
PYthon TUPIESceueeeeeeeeeenneeeneeeenneeennnnnnnnnnnensnnnssssssssssssssssssssssssssssssssssses 23-31
Python - DICHIONALY ..ccciiiiiiiiiiinnnnnneiiiicccsssssssnnsnssnnneccsssssssnnssssssssssssssses 32-48

INEXT SEEPS? . ciiiiiiiiiiiiiiieineeenessses 49

Python - Lists

The most basic data structure in Python is the sequence. Each element of a sequence is assigned
a number - its position or index. The first index is zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples,
which we would see in this tutorial.

There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in
functions for finding the length of a sequence and for finding its largest and smallest elements.

Python Lists

The list is a most versatile datatype available in Python which can be written as a list of com-
ma-separated values (items) between square brackets. Important thing about a list is that items
in a list need not be of the same type.

Creating a list 1s as simple as putting different comma-separated values between square brack-
ets. For example —

listl = [*physics’, ‘chemistry’, 1997, 2000];
list2=1[1,2,3,4,51;
list3 — [66a77’ Céb”’ “C”’ Céd”]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example —

#!/usr/bin/python

listl = [“physics’, ‘chemistry’, 1997, 2000];
list2=[1,2,3,4,5,6,71;

print “list1[0]: «, list1[0]

print “list2[1:5]: «, list2[1:5]

When the above code is executed, it produces the following result —

list1[0]: physics
list2[1:5]: [2, 3,4, 5]

Updating Lists
You can update single or multiple elements of lists by giving the slice on the left-hand side of

the assignment operator, and you can add to elements in a list with the append() method. For
example —

#!/usr/bin/python

list = [“physics’, ‘chemistry’, 1997, 2000];
print “Value available at index 2 : *

print list[2]

list[2] =2001;

print “New value available at index 2 : “

print list[2]

Note — append() method is discussed in subsequent section.

When the above code is executed, it produces the following result —

Value available at index 2 :
1997

New value available at index 2 :
2001

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which ele-
ment(s) you are deleting or the remove() method if you do not know. For example —

#!/usr/bin/python

list] = [“physics’, ‘chemistry’, 1997, 2000];
print listl

del list1[2];

print “After deleting value at index 2 : “

print listl

When the above code is executed, it produces following result —

[‘physics’, ‘chemistry’, 1997, 2000]
After deleting value at index 2 :

[“physics’, ‘chemistry’, 2000]
Note — remove() method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repeti-
tion here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior

chapter.
Python Expression Results Description
len([1, 2, 3]) 3 Length
[1,2,3]+][4,5, 6] [1,2,3,4,5,6] Concatenation
[‘Hi!’] * 4 [‘Hi!”, ‘Hi!’, “Hi!’, ‘Hi!’] Repetition
3in[l1,2, 3] True Membership
for x in [1, 2, 3]: print x, 123 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for
strings.

Assuming following input —

L =[‘spam’, ‘Spam’, ‘SPAM!’]

Gizmofacts §

Python Expression Results Description

L[2] SPAM! Offsets start at zero
L[-2] Spam Negative: count from the
right
L[1:] [‘Spam’, ‘SPAM!’] Slicing fetches sections

Built-in List Functions & Methods

Python includes the following list functions —

Sr.No. Function with Description

cmp(listl, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

list(seq)

Converts a tuple into list.

Python List cmp() Method

Description

Python list method ecmp() compares elements of two lists.

Syntax

Following is the syntax for emp() method —

cmp(list1, list2)

Parameters
e listl — This is the first list to be compared.

e list2 — This is the second list to be compared.

Return Value

If elements are of the same type, perform the compare and return the result. If elements are different types,
check to see if they are numbers.

* If numbers, perform numeric coercion if necessary and compare.
» Ifeither element is a number, then the other element is “larger” (numbers are “smallest”).

* Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the lists, the longer list is “larger.” If we exhaust both lists and share the

same data, the result is a tie, meaning that 0 is returned.

Example

The following example shows the usage of cmp() method.

#!/usr/bin/python

listl, list2 = [123, ‘xyz’], [456, ‘abc’]
print cmp(list1, list2)

print cmp(list2, list])

list3 = list2 + [786];

print cmp(list2, list3)

When we run above program, it produces following result —

Python List len() Method

Description

Python list method len() returns the number of elements in the /ist.

Syntax

Following is the syntax for len() method —

Gizmofacts 10

len(list)

Parameters

e listl — This is a list for which number of elements to be counted.

Return Value

This method returns the number of elements in the list.

Example

The following example shows the usage of len() method.
#!/usr/bin/python

listl, list2 = [123, ‘xyz’, ‘zara’], [456, ‘abc’]
print “First list length : «, len(list1)
print “Second list length : , len(list2)

When we run above program, it produces following result —

First list length : 3
Second list length : 2

Python List max() Method

Description

Python list method max returns the elements from the list with maximum value.

Syntax

Following is the syntax for max() method —
max(list)

Parameters

e listl — This is a list from which max valued element to be returned.

Return Value

This method returns the elements from the list with maximum value.

Example

The following example shows the usage of cmp() method.

#!/ust/bin/python

listl, list2 = [123, ‘xyz’, ‘zara’, ‘abc’], [456, 700, 200]
print “Max value element : ““, max(list1)

print “Max value element : *“, max(list2)

When we run above program, it produces following result —

Max value element : zara

Max value element : 700

Python List min() Method

Description

Python list method min() returns the elements from the /ist with minimum value.
Syntax
Following is the syntax for min() method —

min(list)

Parameters

e listl — This is a list from which min valued element to be returned.

Return Value

This method returns the elements from the list with minimum value.

Example

The following example shows the usage of min() method.

#!/ust/bin/python
list1, list2 = [123, ‘xyz’, ‘zara’, ‘abc’], [456, 700, 200]

print “min value element : ““, min(list1)

print “min value element : *, min(list2)

When we run above program, it produces following result —

min value element : 123

min value element : 200

Python List list () Method

Description

Python list method list() takes sequence types and converts them to lists. This is used to convert a given

tuple into list.

Note — Tuple are very similar to lists with only difference that element values of a tuple can not be changed

and tuple elements are put between parentheses instead of square bracket.

Syntax
Following is the syntax for list() method —

list(seq)

e seq — This is a tuple to be converted into list.

Return Value

This method returns the list.

Example

The following example shows the usage of list() method.

#!/usr/bin/python

aTuple = (123, ‘xyz’, ‘zara’, ‘abc’);
aList = list(aTuple)

print “List elements : , aList
When we run above program, it produces following result —

List elements : [123, ‘xyz’, ‘zara’, ‘abc’]

Python includes following list methods

Sr.No. Function with Description

list.append(obj)

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

S list.insert(index, obj)
Inserts object obj into list at offset index
6 list.pop(obj=list[-1])
Removes and returns last object or obj from list
7 . .
list.remove(obj)
Removes object obj from list
8 list.reverse()
Reverses objects of list in place
9 list.sort([func])

Sorts objects of list, use compare func if given

Gizmofacts 14

Python List append() Method

Description
Python list method append() appends a passed obj into the existing list.

Syntax
Following is the syntax for append() method —

list.append(obyj)

Parameters

* obj — This is the object to be appended in the list.

Return Value

This method does not return any value but updates existing list.

Example

The following example shows the usage of append() method.

#!/usr/bin/python
alist=[123, ‘xyz’, ‘zara’, ‘abc’];

aList.append(2009);
print “Updated List : «, aList

When we run above program, it produces following result —

Updated List : [123, ‘xyz’, ‘zara’, ‘abc’, 2009]

Python List count() Method

Description

Python list method count() returns count of how many times obj occurs in list.

Syntax

Following is the syntax for count() method —

list.count(obj)

Parameters

* obj — This is the object to be counted in the list.

Return Value

This method returns count of how many times obj occurs in list.

Example

The following example shows the usage of count() method.

#!/usr/bin/python

aList=[123, ‘xyz’, ‘zara’, ‘abc’, 123];
print “Count for 123 : *, aList.count(123)

print “Count for zara : “, aList.count(‘zara’)

When we run above program, it produces following result —

Count for 123 : 2

Count for zara : 1

Python List extend() Method

Description
Python list method extend() appends the contents of seq to list.

Syntax

Following is the syntax for extend() method —

list.extend(seq)

Parameters

e seq — This is the list of elements

Return Value

This method does not return any value but add the content to existing list.

Example

The following example shows the usage of extend() method.

Gizmofacts

16

#!/usr/bin/python

alList=[123, ‘xyz’, ‘zara’, ‘abc’, 123];
bList = [2009, ‘manni’];
aList.extend(bList)

print “Extended List : «, aList

When we run above program, it produces following result —

Extended List : [123, ‘xyz’, ‘zara’, ‘abc’, 123, 2009, ‘manni’]

Python List index() Method

Description

Python list method index() returns the lowest index in list that obj appears.

Syntax

Following is the syntax for index() method —

list.index(obj)

Parameters

e obj — This is the object to be find out.

Return Value

This method returns index of the found object otherwise raise an exception indicating that value does not find.

Example

The following example shows the usage of index() method.

#!/ust/bin/python
aList =[123, ‘xyz’, ‘zara’, ‘abc’];

print “Index for xyz : “, aList.index(‘xyz’)

print “Index for zara : *, al.ist.index(‘zara’)

When we run above program, it produces following result —

Index for xyz : 1

Index for zara : 2

Python List insert() Method

Description
Python list method insert() inserts object obj into list at offset index.

Syntax

Following is the syntax for insert() method —

list.insert(index, obj)

Parameters

e index — This is the Index where the object obj need to be inserted.

* obj — This is the Object to be inserted into the given list.

Return Value

This method does not return any value but it inserts the given element at the given index.

Example

The following example shows the usage of insert() method.

#!/ust/bin/python
aList = [123, ‘xyz’, ‘zara’, ‘abc’]
aList.insert(3, 2009)

print “Final List : *, aList

When we run above program, it produces following result —

Final List : [123, ‘xyz’, ‘zara’, 2009, ‘abc’]

Gizmofacts

18

Python List pop() Method

Description

Python list method pop() removes and returns last object or obj from the list.

Syntax
Following is the syntax for pop() method —

list.pop(obj = list[-1])
Parameters
e obj — This is an optional parameter, index of the object to be removed from the list.

Return Value

This method returns the removed object from the list.

Example

The following example shows the usage of pop() method.
#!/ust/bin/python

aList =[123, ‘xyz’, ‘zara’, ‘abc’];
print “A List : “, aList.pop()
print “B List : “, aList.pop(2)

When we run above program, it produces following result —

A List ;: abc

B List ; zara

Python List remove() Method

Description

Python list method remove() searches for the given element in the list and removes the first matching ele-

ment.

Syntax

Following is the syntax for remove() method —

Gizmofacts

list.remove(obj)

Parameters

e obj — This is the object to be removed from the list.

Return Value

This Python list method does not return any value but removes the given object from the list.

Example

The following example shows the usage of remove() method.

#!/ust/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.remove(‘xyz’);
print “List : *, alList
aList.remove(‘abc’);

print “List : «, aList
When we run above program, it produces following result —

List : [123, ‘zara’, ‘abc’, ‘xyz’]
List : [123, ‘zara’, ‘xyz’]

Python List reverse() Method

Description

Python list method reverse() reverses objects of list in place.

Syntax

Following is the syntax for reverse() method —

list.reverse()

Parameters

 NA

Gizmofacts 20

Return Value

This method does not return any value but reverse the given object from the list.

Example

The following example shows the usage of reverse() method.

#!/usr/bin/python

alist=[123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.reverse();

print “List : «, aList

When we run above program, it produces following result —

List : [‘xyz’, ‘abc’, ‘zara’, ‘xyz’, 123]

Python List sort() Method

Description

Python list method sort() sorts objects of list, use compare func if given.

Syntax

Following is the syntax for sort() method —

list.sort([func])

Parameters

« NA

Return Value

This method does not return any value but it changes from the original list.

Example

The following example shows the usage of sort() method.

#!/ust/bin/python
aList =[123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.sort();

print “List : «, aList

When we run above program, it produces following result —

List: [123, ‘abc’, ‘xyz’, ‘xyz’, ‘zara’]

Python - Lists

A tuple is a collection of objects which ordered and immutable. Tuples are sequences,
just like lists. The differences between tuples and lists are, the tuples cannot be changed
unlike lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally
you can put these comma-separated values between parentheses also. For example —

tupl = (‘physics’, ‘chemistry’, 1997, 2000);
tup2=(1,2,3,4,5);
tup3 — (13 9’, “b”’ “C”, (‘d”;

The empty tuple 1s written as two parentheses containing nothing —

tupl = ();

To write a tuple containing a single value you have to include a comma, even though there is
only one value —

tupl = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices
to obtain value available at that index. For example —

#!/usr/bin/python

tupl = (‘physics’, ‘chemistry’, 1997, 2000);
tup2 =(1,2,3,4,5,6,7);

print “tup1[0]: «, tup1[0];

print “tup2[1:5]: , tup2[1:5];

When the above code is executed, it produces the following result —

tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

Updating Tuples
Tuples are immutable which means you cannot update or change the values of tuple ele-

ments. You are able to take portions of existing tuples to create new tuples as the following
example demonstrates —

#!/usr/bin/python

tupl = (12, 34.56);
tup2 = (‘abc’, ‘xyz’);

Following action is not valid for tuples
tup1[0] = 100;

So let’s create a new tuple as follows
tup3 = tupl + tup2;
print tup3;

When the above code is executed, it produces the following result —

(12, 34.56, ‘abe’, “xyz’)

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with
putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example —

#!/usr/bin/python

tup = (‘physics’, ‘chemistry’, 1997, 2000);
print tup;

del tup;

print “After deleting tup : *;

print tup;

This produces the following result. Note an exception raised, this is because after del tup tuple

does not exist any more —

Gizmofacts 24

(‘physics’, ‘chemistry’, 1997, 2000)
After deleting tup :
Traceback (most recent call last):
File “test.py”, line 9, in <module>
print tup;

NameError: name ‘tup’ is not defined

Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean concatenation and repe-

tition here too, except that the result is a new tuple, not a string.
In fact, tuples respond to all of the general sequence operations we used on strings in the prior

chapter —
Python Expression Results Description
len((1, 2, 3)) 3 Length
(1,2,3)+ (4,5, 6) (1,2,3,4,5,6) Concatenation
(‘Hi!’,) * 4 (‘Hi!”, “Hi!’, ‘Hi!’, ‘Hi!”) Repetition
3in(1,2,3) True Membership
for x in (1, 2, 3): print x, 123 Iteration

Indexing, Slicing, and Matrixes
Because tuples are sequences, indexing and slicing work the same way for tuples as they do

for strings. Assuming following input —

L= (‘spam’, ‘Spam’, ‘SPAM!’)

Python Expression Results Description
L[2] ‘SPAMY!” Offsets start at zero
L[-2] ‘Spam’ Negative: count from the right
L[1:] [‘Spam’, ‘SPAM!’] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples —

#!/usr/bin/python

print ‘abc’, -4.24e93, 18+6.6j, ‘xyz’;

x,y=1,2;

print “Value of x , y : , X,y;

When the above code is executed, it produces the following result —

abc -4.24e+93 (18+6.6j) xyz

Value of x ,y: 12

Built-in Tuple Functions

Python includes the following tuple functions —

Sr.No. Function with Description

1 cmp(tuplel, tuple2)

Compares elements of both tuples.
2 len(tuple)

Gives the total length of the tuple.
3 max(tuple)

Returns item from the tuple with max value.
4 min(tuple)

Returns item from the tuple with min value.
S tuple(seq)

Converts a list into tuple.

Gizmofacts

26

Python Tuple cmp() Method

Description
Python tuple method cmp() compares elements of two tuples.

Syntax

Following is the syntax for cmp() method —

cmp(tuplel, tuple2)

Parameters

e tuplel —This is the first tuple to be compared
e tuple2 — This is the second tuple to be compared

Return Value

If elements are of the same type, perform the compare and return the result. If elements are different types,
check to see if they are numbers.

* If numbers, perform numeric coercion if necessary and compare.

» [feither element is a number, then the other element is “larger” (numbers are “smallest”).

* Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the tuples, the longer tuple is “larger.” If we exhaust both tuples and share

the same data, the result is a tie, meaning that 0 is returned.

Example

The following example shows the usage of cmp() method.

#!/usr/bin/python

tuplel, tuple2 = (123, ‘xyz’), (456, ‘abc’)
print cmp(tuplel, tuple2)
print cmp(tuple2, tuplel)
tuple3 = tuple2 + (786,);
print cmp(tuple2, tuple3)

When we run above program, it produces following result —

Python Tuple len() Method

Description

Python tuple method len() returns the number of elements in the tuple.

Syntax

Following is the syntax for len() method —
len(tuple)

Parameters

* tuple — This is a tuple for which number of elements to be counted.

Return Value

This method returns the number of elements in the tuple.

Example

The following example shows the usage of len() method.

#!/usr/bin/python

tuplel, tuple2 = (123, ‘xyz’, ‘zara’), (456, ‘abc’)
print “First tuple length : , len(tuplel)
print “Second tuple length : “, len(tuple2)

When we run above program, it produces following result —

First tuple length : 3
Second tuple length : 2

Python Tuple max() Method

Description

Python tuple method max() returns the elements from the tuple with maximum value.

Syntax

Following is the syntax for max() method —

max(tuple)

Gizmofacts 28

Parameters

e tuple — This is a tuple from which max valued element to be returned.

Return Value

This method returns the elements from the tuple with maximum value.

Example

The following example shows the usage of max() method.

#!/usr/bin/python

tuplel, tuple2 = (123, ‘xyz’, ‘zara’, ‘abc’), (456, 700, 200)
print “Max value element : ““, max(tuplel)

print “Max value element : “, max(tuple2)
When we run above program, it produces following result —

Max value element : zara

Max value element : 700

Python Tuple min() Method

Description

Python tuple method min() returns the elements from the tuple with minimum value.

Syntax

Following is the syntax for min() method —

min(tuple)

Parameters

e tuple — This is a tuple from which min valued element to be returned.

Return Value

This method returns the elements from the tuple with minimum value.

Example

The following example shows the usage of min() method.

Gizmofacts

#!/usr/bin/python

tuplel, tuple2 = (123, ‘xyz’, ‘zara’, ‘abc’), (456, 700, 200)
print “min value element : “, min(tuplel)

print “min value element : “, min(tuple2)

When we run above program, it produces following result —

min value element ;: 123

min value element : 200

Python Tuple tuple() Method

Description

Python tuple method tuple() converts a list of items into tuples

Syntax
Following is the syntax for tuple() method —

tuple(seq)

Parameters

* seq — This is a sequence to be converted into tuple.

Return Value

This method returns the tuple.

Example

The following example shows the usage of tuple() method.

#!/usr/bin/python
alist=[123, ‘xyz’, ‘zara’, ‘abc’]

aTuple = tuple(aList)

print “Tuple elements : “, aTuple

Gizmofacts

When we run above program, it produces following result —

Tuple elements : (123, ‘xyz’, ‘zara’, ‘abc’)

Python - Dictionary

Each key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary without any items is written with
just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be
of any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to
obtain its value. Following is a simple example —

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
print “dict[‘Name’]: «, dict[Name’]
print “dict[‘Age’]: «, dict[‘Age’]

When the above code is executed, it produces the following result —

dict['Name’]: Zara
dict[‘Age’]: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error as follows —

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
print “dict[‘Alice’]: , dict[‘Alice’]

When the above code is executed, it produces the following result —

dict[‘Alice’]:
Traceback (most recent call last):
File “test.py”, line 4, in <module>
print “dict[‘Alice’]: , dict[‘Alice’];
KeyError: ‘Alice’

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing
entry, or deleting an existing entry as shown below in the simple example —

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
dict[‘Age’] = 8; # update existing entry
dict[‘School’] = “DPS School”; # Add new entry

print “dict[‘Age’]: , dict[‘Age’]
print “dict[‘School’]: *, dict[‘School’]

When the above code is executed, it produces the following result —

dict[‘Age’]: 8
dict[‘School’]: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictio-
nary. You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple
example —

#!/ust/bin/python

dict = {*Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
del dict[‘Name’]; # remove entry with key ‘Name’
dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print “dict[‘Age’]: «, dict[‘Age’]
print “dict[‘School’]: *, dict[‘School’]

This produces the following result. Note that an exception is raised because after del dict dictionary does not

exist any more —

dict[‘Age’]:
Traceback (most recent call last):
File “test.py”, line 8, in <module>
print “dict[‘Age’]: «, dict[‘Age’];
TypeError: ‘type’ object is unsubscriptable

Note — del() method is discussed in subsequent section.
Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard
objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys —

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When
duplicate keys encountered during assignment, the last assignment wins. For example —

#!/usr/bin/python

dict = {*Name’: ‘Zara’, ‘Age’: 7, ‘Name’: ‘Manni’}
print “dict[‘Name’]: «, dict[Name’]

When the above code is executed, it produces the following result —

dict[‘Name’]: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys but

something like [‘key’] is not allowed. Following is a simple example —

#!/ust/bin/python

dict = {[‘Name’]: ‘Zara’, ‘Age’: 7}
print “dict[‘Name’]: «, dict[‘Name’]

When the above code is executed, it produces the following result —

Traceback (most recent call last):
File “test.py”, line 3, in <module>
dict = {[*Name’]: ‘Zara’, ‘Age’: 7};
TypeError: unhashable type: ‘list’

Gizmofacts

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions —

Sr.No. Function with Description
1 cmp(dictl, dict2)
Compares elements of both dict.
2 len(dict)
Gives the total length of the dictionary. This would be equal to the number of
items in the dictionary.
3 str(dict)
Produces a printable string representation of a dictionary
4 type(variable)
Returns the type of the passed variable. If passed variable is dictionary, then it
would return a dictionary type.
Python dictionary cmp() Method
Description

Python dictionary method emp() compares two dictionaries based on key and values.

Syntax

Following is the syntax for ecmp() method —

cmp(dictl, dict2)

Parameters

e dictl — This is the first dictionary to be compared with dict2.

e dict2 — This is the second dictionary to be compared with dictl.

Return Value
This method returns 0 if both dictionaries are equal, -1 if dictl < dict2 and 1 if dictl > dic2.
Example

The following example shows the usage of cmp() method.

#!/usr/bin/python

dictl = {‘Name’: ‘Zara’, ‘Age’: 7};

dict2 = {‘Name’: ‘Mahnaz’, ‘Age’: 27};

dict3 = {*Name’: ‘Abid’, ‘Age’: 27};

dict4 = {*Name’: ‘Zara’, ‘Age’: 7};

print “Return Value : %d” % cmp (dictl, dict2)
print “Return Value : %d” % cmp (dict2, dict3)
print “Return Value : %d” % cmp (dictl, dict4)

When we run above program, it produces following result —

Return Value : -1
Return Value : 1

Return Value : 0

Python dictionary len() Method

Description

Python dictionary method len() gives the total length of the dictionary. This would be equal to the number of

items in the dictionary.

Syntax

Following is the syntax for len() method —

len(dict)

Parameters

e dictl — This is the dictionary, whose length needs to be calculated.

Return Value

This method returns the length.

Example

The following example shows the usage of len() method.

Gizmofacts

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Length : %d” % len (dict)

When we run above program, it produces following result —

Length : 2

Python dictionary str() Method

Description

Python dictionary method str() produces a printable string representation of a dictionary.

Syntax

Following is the syntax for str() method —

str(dict)
Parameters
e dict — This is the dictionary.

Return Value
This method returns string representation.
Example

The following example shows the usage of str() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Equivalent String : %s” % str (dict)

When we run above program, it produces following result —

Equivalent String : {*Age’: 7, ‘Name’: ‘Zara’}

Python dictionary type() Method

Description

Python dictionary method type() returns the type of the passed variable. If passed variable is dictionary then

it would return a dictionary type.

Syntax
Following is the syntax for type() method —

type(dict)

Parameters

e dict — This is the dictionary.

Return Value
This method returns the type of the passed variable.
Example

The following example shows the usage of type() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Variable Type : %s” % type (dict)

When we run above program, it produces following result —

Variable Type : <type ‘dict’>

Gizmofacts

Python includes following dictionary methods —

Sr.No. Function with Description
1 dict.clear()
Removes all elements of dictionary dict
2 dict.copy()
Returns a shallow copy of dictionary dict
3 dict.fromkeys()
Create a new dictionary with keys from seq and values set to value.
4 dict.get(key, default=None)
For key key, returns value or default if key not in dictionary
5 dict.has_key(key)
Returns true if key in dictionary dict, false otherwise
6 dict.items()
Returns a list of dict’s (key, value) tuple pairs
7 dict.keys()
Returns list of dictionary dict’s keys
8 dict.setdefault(key, default=None)
Similar to get(), but will set dict[key]=default if key is not already in dict
8 dict.update(dict2)
Adds dictionary dict2’s key-values pairs to dict
10 dict.values()
Returns list of dictionary dict’s values

Gizmofacts

Python dictionary clear() Method

Description

Python dictionary method clear() removes all items from the dictionary.

Syntax

Following is the syntax for clear() method —

dict.clear()

Parameters

 NA

Return Value

This method does not return any value.

Example

The following example shows the usage of clear() method.
#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Start Len : %d” % len(dict)
dict.clear()

print “End Len : %d” % len(dict)

When we run above program, it produces following result —

Start Len : 2
End Len: 0

Python dictionary copy() Method

Description

Python dictionary method copy() returns a shallow copy of the dictionary.

Syntax
Following is the syntax for copy() method —

Gizmofacts

a0

dict.copy()

Parameters

 NA

Return Value

This method returns a shallow copy of the dictionary.

Example

The following example shows the usage of copy() method.

#!/usr/bin/python

dictl = {*Name’: ‘Zara’, ‘Age’: 7};
dict2 = dictl.copy()
print “New Dictionary : %s” % str(dict2)

When we run above program, it produces following result —

New Dictionary : {*Age’: 7, ‘Name’: ‘Zara’}

Python dictionary fromkeys() Method
Description
Python dictionary method fromkeys() creates a new dictionary with keys from seq and values set to value.

Syntax

Following is the syntax for fromkeys() method —

dict.fromkeys(seq[, value])

Parameters

e seq — This is the list of values which would be used for dictionary keys
preparation.

e value — This is optional, if provided then value would be set to this value

Return Value

This method returns the list.

Gizmofacts i}

Example

The following example shows the usage of fromkeys() method.

#!/ust/bin/python

seq = (‘name’, ‘age’, ‘sex’)
dict = dict.fromkeys(seq)
print “New Dictionary : %s” % str(dict)

dict = dict.fromkeys(seq, 10)
print “New Dictionary : %s” % str(dict)

When we run above program, it produces following result —

New Dictionary : {‘age’: None, ‘name’: None, ‘sex’: None}

New Dictionary : {‘age’: 10, ‘name’: 10, ‘sex’: 10}

Python dictionary get() Method

Description
Python dictionary method get() returns a value for the given key. If key is not available then returns default

value None.

Syntax

Following is the syntax for get() method —

dict.get(key, default = None)

Parameters

* key — This is the Key to be searched in the dictionary.

e default — This is the Value to be returned in case key does not exist.

Return Value

This method return a value for the given key. If key is not available, then returns default value None.

Gizmofacts 42

Example

The following example shows the usage of get() method.

#!/ust/bin/python

dict = {"Name’: ‘Zabra’, ‘Age’: 7}
print “Value : %s” % dict.get(‘Age’)
print “Value : %s” % dict.get(‘Education’, “Never”)

When we run above program, it produces following result —

Value : 7

Value : Never

Python dictionary has key() Method

Description

Python dictionary method has_key() returns true if a given key is available in the dictionary, otherwise it

returns a false.

Syntax

Following is the syntax for has_key() method —

dict.has_key(key)

Parameters

* key — This is the Key to be searched in the dictionary.

Return Value

This method return true if a given key is available in the dictionary, otherwise it returns a false.

Example

The following example shows the usage of has key() method.

Gizmofacts 13

#!/ust/bin/python

dict = {*Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.has key(‘Age’)
print “Value : %s” % dict.has key(‘Sex’)

When we run above program, it produces following result —

Value : True

Value : False

Python dictionary items() Method

Description

Python dictionary method items() returns a list of dict’s (key, value) tuple pairs

Syntax

Following is the syntax for items() method —

dict.items()

Parameters

 NA

Return Value

This method returns a list of tuple pairs.

Example

The following example shows the usage of items() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.items()

When we run above program, it produces following result —

Value : [(‘Age’, 7), (‘Name’, ‘Zara’)]

Gizmofacts a4

Python dictionary keys() Method

Description

Python dictionary method keys() returns a list of all the available keys in the dictionary.

Syntax

Following is the syntax for keys() method —

dict.keys()

Parameters
e NA

Return Value

This method returns a list of all the available keys in the dictionary.

Example

The following example shows the usage of keys() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.keys()

When we run above program, it produces following result —

Value : [*Age’, ‘Name’]

Gizmofacts

iy

Python dictionary setdefault() Method

Description
Python dictionary method setdefault() is similar to get(), but will set dict[key]=default if key is not already

in dict.

Syntax

Following is the syntax for setdefault() method —
dict.setdefault(key, default=None)

Parameters

» key — This is the key to be searched.

e default — This is the Value to be returned in case key is not found.

Return Value
This method returns the key value available in the dictionary and if given key is not available then it will

return provided default value.

Example

The following example shows the usage of setdefault() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}

print “Value : %s” % dict.setdefault(‘Age’, None)
print “Value : %s” % dict.setdefault(‘Sex’, None)

When we run above program, it produces following result —

Value : 7

Value : None

Gizmofacts 16

Python dictionary update() Method

Description
Python dictionary method update() adds dictionary dict2’s key-values pairs in to dict. This function does not

return anything.

Syntax
Following is the syntax for update() method —

dict.update(dict2)

Parameters

e dict2 — This is the dictionary to be added into dict.

Return Value

This method does not return any value.

Example

The following example shows the usage of update() method.
#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
dict2 = {*Sex’: ‘female’ }

dict.update(dict2)
print “Value : %s” % dict

When we run above program, it produces following result —

Value : {*Age’: 7, ‘Name’: ‘Zara’, ‘Sex’: ‘female’}

Gizmofacts 47

Python dictionary values() Method

Description

Python dictionary method values() returns a list of all the values available in a given dictionary.

Syntax

Following is the syntax for values() method —
dict.values()

Parameters

 NA

Return Value

This method returns a list of all the values available in a given dictionary.

Example

The following example shows the usage of values() method.

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}

print “Value : %s” % dict.values()
When we run above program, it produces following result —

Value : [7, ‘Zara’]

Gizmofacts a8

Next Steps?

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav(@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

