
Gizmofacts 1

Python Decision
Making and Controls

www.gizmofacts.comWebsite

Gizmofacts

Kaustav Ghosh
Dastidar

Gizmofacts 2

Python Decision
Making and Controls

Preface
This book is written to help you to learn Python programming quickly and effectively.
In real life, we face situations in which we must make decisions and then decide what to do
next. Similar situations arise in programming where we must make decisions and then execute
the next block of code based on those decisions.

In Python, the if-else elif statement is used to make decisions. Making decisions will be a part
of your programming journey from start to finish. At each stage, you must make decisions
based on a condition.

That is what we will cover in this Python decision-making article, as well as how to use if
statements, if-else statements, and Nested statements in Python.

The chapters in this book will guide you through simple and practical approaches to learning
Python Decision Making and Controls.

With Warm Regards,
Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

Gizmofacts 3

About The Author
The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Gizmofacts 4

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

Disclaimer

Gizmofacts 5

Python - Decision Making...6-11

Python - Loops...12-23

Next Steps?..24

Table of Content

Gizmofacts 6

Python - Decision Making
Decision making is anticipation of conditions occurring while execution of the program and
specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as out-
come. You need to determine which action to take and which statements to execute if outcome
is TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the
programming languages −

Python programming language assumes any non-zero and non-null values as TRUE, and if it
is either zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements. Click
the following links to check their detail.

1

2

3

Sr.No. Statement & Description

An if statement consists of a boolean expression followed by one or more
statements.

if statements

if...else statements

nested if statements

An if statement can be followed by an optional else statement, which
executes when the boolean expression is FALSE.

You can use one if or else if statement inside another if or else if statement(s).

Gizmofacts 7

When the above code is executed, it produces the following result −

#!/usr/bin/python

var1 = 100
if var1:
 print “1 - Got a true expression value”
 print var1

var2 = 0
if var2:
 print “2 - Got a true expression value”
 print var2
print “Good bye!”

1 - Got a true expression value
100
Good bye!

if expression:
 statement(s)

Python IF Statement

It is similar to that of other languages. The if statement contains a logical expression using which data is
compared and a decision is made based on the result of the comparison.

Syntax

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if statement is executed.
If boolean expression evaluates to FALSE, then the first set of code after the end of the if statement(s) is
executed.

Flow Diagram

Example

Gizmofacts 8

#!/usr/bin/python

var1 = 100
if var1:
 print “1 - Got a true expression value”
 print var1
else:
 print “1 - Got a false expression value”
 print var1

var2 = 0
if var2:
 print “2 - Got a true expression value”
 print var2
else:
 print “2 - Got a false expression value”
 print var2

print “Good bye!”

if expression:
 statement(s)
else:
 statement(s)

Python IF...ELIF...ELSE Statements

An else statement can be combined with an if statement. An else statement contains the block of code that
executes if the conditional expression in the if statement resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one else statement following if.

Syntax

Flow Diagram

Example

The syntax of the if...else statement is −

When the above code is executed, it produces the following result −

Gizmofacts 9

1 - Got a true expression value
100
2 - Got a false expression value
0
Good bye!

if expression1:
 statement(s)
elif expression2:
 statement(s)
elif expression3:
 statement(s)
else:
 statement(s)

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block of code as soon
as one of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for which there can be at most one
statement, there can be an arbitrary number of elif statements following an if.

syntax

Core Python does not provide switch or case statements as in other languages, but we can use if..elif...statements
to simulate switch case as follows −

#!/usr/bin/python

var = 100
if var == 200:
 print “1 - Got a true expression value”
 print var
elif var == 150:
 print “2 - Got a true expression value”
 print var
elif var == 100:
 print “3 - Got a true expression value”
 print var
else:
 print “4 - Got a false expression value”
 print var

print “Good bye!”

Example

When the above code is executed, it produces the following result −

Gizmofacts 10

3 - Got a true expression value
100
Good bye!

#!/usr/bin/python

var = 100
if var < 200:
 print “Expression value is less than 200”
 if var == 150:
 print “Which is 150”
 elif var == 100:
 print “Which is 100”
 elif var == 50:
 print “Which is 50”
 elif var < 50:
 print “Expression value is less than 50”
else:
 print “Could not find true expression”

print “Good bye!”

if expression1:
 statement(s)
 if expression2:
 statement(s)
 elif expression3:
 statement(s)
 elif expression4:
 statement(s)
 else:
 statement(s)
else:
 statement(s)

Python nested IF statements

There may be a situation when you want to check for another condition after a condition resolves to true. In
such a situation, you can use the nested if construct.

In a nested if construct, you can have an if...elif...else construct inside another if...elif...else construct.

Syntax

Example

The syntax of the nested if...elif...else construct may be −

When the above code is executed, it produces following result −

Gizmofacts 11

Expression value is less than 200
Which is 100
Good bye!

Let us go through each decision making briefly −

When the above code is executed, it produces the following result −

Single Statement Suites
If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement.

Here is an example of a one-line if clause −

#!/usr/bin/python

var = 100
if (var == 100) : print “Value of expression is 100”
print “Good bye!”

Value of expression is 100
Good bye!

Gizmofacts 12

Python - Loops
In general, statements are executed sequentially: The first statement in a function is executed
first, followed by the second, and so on. There may be a situation when you need to execute a
block of code several number of times.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The
following diagram illustrates a loop statement −

1

2

3

Sr.No. Loop Type & Description

Repeats a statement or group of statements while a given condition is TRUE.
It tests the condition before executing the loop body.

while loop

for loop

nested loops

Executes a sequence of statements multiple times and abbreviates the code
that manages the loop variable.

You can use one or more loop inside any another while, for or do..while loop.

Python programming language provides following types of loops to handle looping
requirements.

Python while Loop Statements

A while loop statement in Python programming language repeatedly executes a target statement as long as a
given condition is true.

Gizmofacts 13

Syntax

The syntax of a while loop in Python programming language is −

while expression:

 statement(s)

Here, statement(s) may be a single statement or a block of statements. The condition may be
any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following
the loop.

In Python, all the statements indented by the same number of character spaces after a
programming construct are considered to be part of a single block of code. Python uses
indentation as its method of grouping statements.

Flow Diagram

Here, key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

#!/usr/bin/python

count = 0
while (count < 9):
 print ‘The count is:’, count
 count = count + 1

print “Good bye!”

Example

Gizmofacts 14

The block here, consisting of the print and increment statements, is executed repeatedly until
count is no longer less than 9. With each iteration, the current value of the index count is
displayed and then increased by 1.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must use caution when
using while loops because of the possibility that this condition never resolves to a FALSE
value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to run
continuously so that client programs can communicate with it as and when required.

When the above code is executed, it produces the following result −

When the above code is executed, it produces the following result −

The count is: 0
The count is: 1
The count is: 2
The count is: 3
The count is: 4
The count is: 5
The count is: 6
The count is: 7
The count is: 8
Good bye!

#!/usr/bin/python

var = 1
while var == 1 : # This constructs an infinite loop
 num = raw_input(“Enter a number :”)
 print “You entered: “, num

print “Good bye!”

Enter a number :20
You entered: 20
Enter a number :29
You entered: 29
Enter a number :3
You entered: 3
Enter a number between :Traceback (most recent call last):
 File “test.py”, line 5, in <module>
 num = raw_input(“Enter a number :”)
KeyboardInterrupt

Gizmofacts 15

Above example goes in an infinite loop and you need to use CTRL+C to exit the program.

Using else Statement with While Loop

Python supports to have an else statement associated with a loop statement.

•	 If the else statement is used with a while loop, the else statement is executed when the
condition becomes false.

The following example illustrates the combination of an else statement with a while statement
that prints a number as long as it is less than 5, otherwise else statement gets executed.

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement, it
may be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause −

#!/usr/bin/python

count = 0
while count < 5:
 print count, “ is less than 5”
 count = count + 1
else:
 print count, “ is not less than 5”

0 is less than 5
1 is less than 5
2 is less than 5
3 is less than 5
4 is less than 5
5 is not less than 5

#!/usr/bin/python

flag = 1
while (flag): print ‘Given flag is really true!’
print “Good bye!”

When the above code is executed, it produces the following result −

It is better not try above example because it goes into infinite loop and you need to press
CTRL+C keys to exit.

Gizmofacts 16

When the above code is executed, it produces the following result −

Python for Loop Statements

It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

for iterating_var in sequence:
statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence
is assigned to the iterating variable iterating_var. Next, the statements block is executed. Each
item in the list is assigned to iterating_var, and the statement(s) block is executed until the
entire sequence is exhausted.

Flow Diagram

#!/usr/bin/python

for letter in ‘Python’: # First Example
 print ‘Current Letter :’, letter

fruits = [‘banana’, ‘apple’, ‘mango’]
for fruit in fruits: # Second Example
 print ‘Current fruit :’, fruit

print “Good bye!”

Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : h

Example

Gizmofacts 17

Current Letter : o
Current Letter : n
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

#!/usr/bin/python

fruits = [‘banana’, ‘apple’, ‘mango’]
for index in range(len(fruits)):
 print ‘Current fruit :’, fruits[index]

print “Good bye!”

#!/usr/bin/python

for num in range(10,20): #to iterate between 10 to 20
 for i in range(2,num): #to iterate on the factors of the number
 if num%i == 0: #to determine the first factor

Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself.
Following is a simple example −

When the above code is executed, it produces the following result −

Here, we took the assistance of the len() built-in function, which provides the total number of
elements in the tuple as well as the range() built-in function to give us the actual sequence to
iterate over.

Using else Statement with For Loop

Python supports to have an else statement associated with a loop statement

•	 If the else statement is used with a for loop, the else statement is executed when the loop
has exhausted iterating the list.

The following example illustrates the combination of an else statement with a for statement
that searches for prime numbers from 10 through 20.

Gizmofacts 18

When the above code is executed, it produces the following result −

A final note on loop nesting is that you can put any type of loop inside of any other type of
loop. For example a for loop can be inside a while loop or vice versa.

The following program uses a nested for loop to find the prime numbers from 2 to 100 −

j=num/i #to calculate the second factor
 print ‘%d equals %d * %d’ % (num,i,j)
 break #to move to the next number, the #first FOR
 else: # else part of the loop
 print num, ‘is a prime number’
		 break

10 equals 2 * 5
11 is a prime number
12 equals 2 * 6
13 is a prime number
14 equals 2 * 7
15 equals 3 * 5
16 equals 2 * 8
17 is a prime number
18 equals 2 * 9
19 is a prime number

Python nested loops

Python programming language allows to use one loop inside another loop. Following section
shows few examples to illustrate the concept.

Syntax

for iterating_var in sequence:
 for iterating_var in sequence:
 statements(s)
 statements(s)

while expression:
 while expression:
 statement(s)
 statement(s)

The syntax for a nested while loop statement in Python programming language is as follows
−.

Example

Gizmofacts 19

#!/usr/bin/python

i = 2
while(i < 100):
 j = 2
 while(j <= (i/j)):
 if not(i%j): break
 j = j + 1
 if (j > i/j) : print i, “ is prime”
 i = i + 1

print “Good bye!”

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
Good bye!

When the above code is executed, it produces following result −

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Gizmofacts 20

Python supports the following control statements. Click the following links to check their
detail.

Let us go through the loop control statements briefly

1

2

3

Sr.No. Control Statement & Description

Terminates the loop statement and transfers execution to the statement
immediately following the loop.

break statement

continue statement

pass statement

Causes the loop to skip the remainder of its body and immediately retest its condition prior
to reiterating.

The pass statement in Python is used when a statement is required syntactically but you do
not want any command or code to execute.

The syntax for a break statement in Python is as follows −

 Python break statement

It terminates the current loop and resumes execution at the next statement, just like the
traditional break statement in C.

The most common use for break is when some external condition is triggered requiring a
hasty exit from a loop. The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost loop
and start executing the next line of code after the block.

Syntax

Flow Diagram

break

Gizmofacts 21

Python continue statement

It returns the control to the beginning of the while loop.. The continue statement rejects all the
remaining statements in the current iteration of the loop and moves the control back to the top
of the loop.

The continue statement can be used in both while and for loops.

continue

#!/usr/bin/python

for letter in ‘Python’: # First Example
 if letter == ‘h’:
 break
 print ‘Current Letter :’, letter

var = 10 # Second Example
while var > 0:
 print ‘Current variable value :’, var
 var = var -1
 if var == 5:
 break

print “Good bye!”

Current Letter : P
Current Letter : y
Current Letter : t
Current variable value : 10
Current variable value : 9
Current variable value : 8
Current variable value : 7
Current variable value : 6
Good bye!

When the above code is executed, it produces the following result −

Example

Syntax

Flow Diagram

Gizmofacts 22

#!/usr/bin/python

for letter in ‘Python’: # First Example
 if letter == ‘h’:
 continue
 print ‘Current Letter :’, letter

var = 10 # Second Example
while var > 0:
 var = var -1
 if var == 5:
 continue
 print ‘Current variable value :’, var
print “Good bye!”

Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : o
Current Letter : n
Current variable value : 9
Current variable value : 8
Current variable value : 7
Current variable value : 6
Current variable value : 4
Current variable value : 3
Current variable value : 2
Current variable value : 1
Current variable value : 0
Good bye!

When the above code is executed, it produces the following result −

Gizmofacts 23

#!/usr/bin/python

for letter in ‘Python’:
 if letter == ‘h’:
 pass
 print ‘This is pass block’
 print ‘Current Letter :’, letter

print “Good bye!”

Current Letter : P
Current Letter : y
Current Letter : t
This is pass block
Current Letter : h
Current Letter : o
Current Letter : n
Good bye!

Python pass Statement

It is used when a statement is required syntactically but you do not want any command or code
to execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also
useful in places where your code will eventually go, but has not been written yet (e.g., in stubs
for example) −

When the above code is executed, it produces following result −

Syntax

pass

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

Next Steps?

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

