Gizmofacts

Python Decision
Making and Controls

Kaustav Ghosh
Dastidar

Website www.gizmofacts.com

Python Decision
Making and Controls

Preface

This book is written to help you to learn Python programming quickly and effectively.

In real life, we face situations in which we must make decisions and then decide what to do
next. Similar situations arise in programming where we must make decisions and then execute
the next block of code based on those decisions.

In Python, the if-else elif statement is used to make decisions. Making decisions will be a part
of your programming journey from start to finish. At each stage, you must make decisions
based on a condition.

That is what we will cover in this Python decision-making article, as well as how to use if

statements, if-else statements, and Nested statements in Python.

The chapters in this book will guide you through simple and practical approaches to learning
Python Decision Making and Controls.

With Warm Regards,
Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

About The Author

The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Disclaimer

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Table of Content

Python - Decision MaKingG.......eeeeeeeeeeeeeeeeeeenenenneeeneeneeenneeeeeeseeesessssssssssssens 6-11

PYthon - LOOPS....cceueeeeeeeeeeeeenneeenennnnnnnnnnsnnnssnsses 12-23

INEXE STEPS?.cciiiiiiiiiicnnnnnntiieecsssssscsnnsssstnneccssns 24

Python - Decision Making

Decision making is anticipation of conditions occurring while execution of the program and
specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as out-
come. You need to determine which action to take and which statements to execute if outcome
1s TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the
programming languages —

If condition If condition
is true is false

Y

conditional
code

Python programming language assumes any non-zero and non-null values as TRUE, and if it
is either zero or null, then it is assumed as FALSE value.

Y

Python programming language provides following types of decision making statements. Click
the following links to check their detail.

Sr.No. Statement & Description
1 .
if statements
An if statement consists of a boolean expression followed by one or more
statements.
2 if...else statements

An if statement can be followed by an optional else statement, which
executes when the boolean expression is FALSE.

nested if statements
You can use one if or else if statement inside another if or else if statement(s).

Python IF Statement

It is similar to that of other languages. The if statement contains a logical expression using which data is
compared and a decision is made based on the result of the comparison.

Syntax

if expression:
statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if statement is executed.
If boolean expression evaluates to FALSE, then the first set of code after the end of the if statement(s) is
executed.

Flow Diagram

If condition
is true

If condition

is false conditional code

Example

#!/usr/bin/python

varl =100

if varl:
print “1 - Got a true expression value”
print varl

var2 =0

if var2:
print “2 - Got a true expression value”
print var2

print “Good bye!”

When the above code is executed, it produces the following result —

1 - Got a true expression value
100
Good bye!

Python IF...ELIF...ELSE Statements

An else statement can be combined with an if statement. An else statement contains the block of code that
executes if the conditional expression in the if statement resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at most only one else statement following if.
Syntax

The syntax of the if...else statement is —

if expression:
statement(s)

else:
statement(s)

Flow Diagram

If condition

is true
condition

If condition
is false

else code

Example

#!/usr/bin/python

varl =100

if varl:
print “1 - Got a true expression value”
print varl

else:
print “1 - Got a false expression value”
print varl

var2 =0

if var2:
print “2 - Got a true expression value”
print var2

else:
print “2 - Got a false expression value”
print var2

'79

print “Good bye

When the above code is executed, it produces the following result —

Gizmofacts 8

1 - Got a true expression value
100

2 - Got a false expression value
0

Good bye!

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block of code as soon
as one of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for which there can be at most one
statement, there can be an arbitrary number of elif statements following an if.

syntax

if expressionl:
statement(s)
elif expression2:
statement(s)
elif expression3:
statement(s)
else:
statement(s)

Core Python does not provide switch or case statements as in other languages, but we can use if..elif...statements
to simulate switch case as follows —

Example

#!/usr/bin/python

var = 100

if var == 200:
print “1 - Got a true expression value’
print var

elif var == 150:
print “2 - Got a true expression value’
print var

elif var == 100:
print “3 - Got a true expression value’
print var

else:
print “4 - Got a false expression value”
print var

9
9

9

print “Good bye!”

When the above code is executed, it produces the following result —

3 - Got a true expression value
100
Good bye!

Python nested IF statements

There may be a situation when you want to check for another condition after a condition resolves to true. In
such a situation, you can use the nested if construct.

In a nested if construct, you can have an if...elif...else construct inside another if...elif...else construct.

Syntax
The syntax of the nested if...elif...else construct may be —

if expressionl:
statement(s)
if expression2:
statement(s)
elif expression3:
statement(s)
elif expression4:
statement(s)
else:
statement(s)
else:
statement(s)

Example
#!/usr/bin/python

var = 100
if var < 200:
print “Expression value is less than 200”
if var == 150:
print “Which is 150”
elif var == 100:
print “Which is 100”
elif var == 50:
print “Which is 50”
elif var < 50:
print “Expression value is less than 50”
else:
print “Could not find true expression”

print “Good bye!”

When the above code is executed, it produces following result —

Gizmofacts 10

Expression value is less than 200
Which is 100
Good bye!

Let us go through each decision making briefly —

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header
statement.

Here is an example of a one-line if clause —

#!/usr/bin/python
var = 100

if (var == 100) : print “Value of expression is 100”
print “Good bye!”

When the above code is executed, it produces the following result —

Value of expression is 100
Good bye!

Python - Loops

In general, statements are executed sequentially: The first statement in a function is executed
first, followed by the second, and so on. There may be a situation when you need to execute a
block of code several number of times.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The
following diagram illustrates a loop statement —

&

Conditional Code

If condition
is true

If condition
is false

Python programming language provides following types of loops to handle looping

requirements.
Sr.No. Loop Type & Description

1 while loop
Repeats a statement or group of statements while a given condition is TRUE.
It tests the condition before executing the loop body.

2 for loop
Executes a sequence of statements multiple times and abbreviates the code
that manages the loop variable.

3
nested loops
You can use one or more loop inside any another while, for or do..while loop.

Python while Loop Statements

A while loop statement in Python programming language repeatedly executes a target statement as long as a
given condition is true.

Syntax
The syntax of a while loop in Python programming language is —
while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements. The condition may be
any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following
the loop.

In Python, all the statements indented by the same number of character spaces after a
programming construct are considered to be part of a single block of code. Python uses
indentation as its method of grouping statements.

Flow Diagram

while expression :
statement(s)

If condition
is true

conditional
code If condition

is false

Here, key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

Example

#!/usr/bin/python
count =0
while (count < 9):
print ‘The count is:’, count

count = count + 1

print “Good bye!”

When the above code is executed, it produces the following result —

The count is: 0
The count is: 1
The count is: 2
The count is: 3
The count is: 4
The count is: 5
The count is: 6
The count is: 7
The count is: 8
Good bye!

The block here, consisting of the print and increment statements, is executed repeatedly until
count is no longer less than 9. With each iteration, the current value of the index count is
displayed and then increased by 1.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must use caution when
using while loops because of the possibility that this condition never resolves to a FALSE
value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to run
continuously so that client programs can communicate with it as and when required.

#!/usr/bin/python

var = 1

while var == 1 : # This constructs an infinite loop
num = raw_input(“Enter a number :”)
print “You entered: , num

print “Good bye!”

When the above code is executed, it produces the following result —

Enter a number :20
You entered: 20
Enter a number :29
You entered: 29
Enter a number :3
You entered: 3
Enter a number between :Traceback (most recent call last):
File “test.py”, line 5, in <module>
num = raw_input(“Enter a number :)
KeyboardInterrupt

Gizmofacts 14

Above example goes in an infinite loop and you need to use CTRL+C to exit the program.

Using else Statement with While Loop
Python supports to have an else statement associated with a loop statement.

» If the else statement is used with a while loop, the else statement is executed when the
condition becomes false.

The following example illustrates the combination of an else statement with a while statement
that prints a number as long as it is less than 5, otherwise else statement gets executed.

#!/usr/bin/python

count =0

while count < 5:
print count, “is less than 5”
count = count + 1

else:
print count, “ is not less than 5

When the above code is executed, it produces the following result —

0 is less than 5
1 is less than 5
2 is less than 5
3 is less than 5
4 is less than 5
5 is not less than 5

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement, it
may be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause —

#!/ust/bin/python

flag =1
while (flag): print ‘Given flag is really true!’
print “Good bye!”

It is better not try above example because it goes into infinite loop and you need to press
CTRLAC keys to exit.

Python for Loop Statements
It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

for iterating_var in sequence:
statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence
1s assigned to the iterating variable iterating var. Next, the statements block is executed. Each
item in the list is assigned to iterating var, and the statement(s) block is executed until the
entire sequence is exhausted.

Flow Diagram

for iterating_var in sequence :
statement(s)

RPN [f no more item in sequence

sequence

A 4
Next item from sequence

execute statement(s)

Example

#!/usr/bin/python

for letter in ‘Python’: # First Example
print ‘Current Letter :’, letter

fruits = [‘banana’, ‘apple’, ‘mango’]
for fruit in fruits: # Second Example
print ‘Current fruit :°, fruit

print “Good bye!”

When the above code is executed, it produces the following result —

Current Letter :
Current Letter :
Current Letter :
Current Letter :

S & & g

Gizmofacts 16

Current Letter : o
Current Letter : n
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence itself.
Following is a simple example —

#!/usr/bin/python

fruits = [‘banana’, ‘apple’, ‘mango’]

for index in range(len(fruits)):

print ‘Current fruit :’, fruits[index]

print “Good bye!”
When the above code 1s executed, it produces the following result —

Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Here, we took the assistance of the len() built-in function, which provides the total number of
elements in the tuple as well as the range() built-in function to give us the actual sequence to
iterate over.

Using else Statement with For Loop

Python supports to have an else statement associated with a loop statement

« If the else statement is used with a for loop, the else statement is executed when the loop
has exhausted iterating the list.

The following example illustrates the combination of an else statement with a for statement
that searches for prime numbers from 10 through 20.

#!/ust/bin/python
for num in range(10,20): #to iterate between 10 to 20

for i in range(2,num): #to iterate on the factors of the number
if num%i == 0: #to determine the first factor

Jj=num/i #to calculate the second factor
print ‘%d equals %d * %d’ % (num,i,j)
break #to move to the next number, the #first FOR

else: # else part of the loop
print num, ‘is a prime number’
break

When the above code is executed, it produces the following result —

10 equals 2 * 5
11 is a prime number
12 equals 2 * 6
13 is a prime number
14 equals 2 * 7
15 equals 3 * 5
16 equals 2 * 8
17 is a prime number
18 equals 2 * 9
19 is a prime number

Python nested loops

Python programming language allows to use one loop inside another loop. Following section
shows few examples to illustrate the concept.

Syntax

for iterating_var in sequence:
for iterating_var in sequence:
statements(s)
statements(s)

The syntax for a nested while loop statement in Python programming language is as follows

while expression:
while expression:
statement(s)
statement(s)

A final note on loop nesting is that you can put any type of loop inside of any other type of
loop. For example a for loop can be inside a while loop or vice versa.

Example
The following program uses a nested for loop to find the prime numbers from 2 to 100 —

Gizmofacts 18

#!/ust/bin/python

1=2
while(i < 100):
j=2
while(j <= (1))):
if not(i%;j): break
j=j+1
if (j > 1/j) : print 1, “ is prime”
i=i+1

print “Good bye!”
When the above code is executed, it produces following result —

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 1s prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime
Good bye!

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Gizmofacts 19

Python supports the following control statements. Click the following links to check their
detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description
1 break statement

Terminates the loop statement and transfers execution to the statement
immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition prior
to reiterating.

pass statement

The pass statement in Python is used when a statement is required syntactically but you do
not want any command or code to execute.

Python break statement

It terminates the current loop and resumes execution at the next statement, just like the
traditional break statement in C.

The most common use for break is when some external condition is triggered requiring a
hasty exit from a loop. The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost loop
and start executing the next line of code after the block.

Syntax

The syntax for a break statement in Python is as follows —

break

Flow Diagram I

If condition
is true

If condition
is false

Gizmofacts 20

Example

#!/usr/bin/python

for letter in ‘Python’: # First Example
if letter == ‘h’:
break
print ‘Current Letter :’, letter

var =10 # Second Example
while var > 0:
print ‘Current variable value :°, var
var = var -1
if var == 5:
break

print “Good bye!”

When the above code is executed, it produces the following result —

Current Letter : P

Current Letter : y

Current Letter : t

Current variable value : 10
Current variable value :
Current variable value :
Current variable value :
Current variable value :
Good bye!

AN 3 0 O

Python continue statement

It returns the control to the beginning of the while loop.. The continue statement rejects all the
remaining statements in the current iteration of the loop and moves the control back to the top
of the loop.

The continue statement can be used in both while and for loops.
Syntax

continue

Flow Diagram

conditional
code

If condition continue
is true

condition

If condition
is false

#!/usr/bin/python

for letter in ‘Python’: # First Example
if letter == ‘h’:
continue
print ‘Current Letter :’°, letter

var = 10 # Second Example
while var > 0:
var = var -1
if var ==5:
continue
print ‘Current variable value :’, var
print “Good bye!”

When the above code is executed, it produces the following result —

Current Letter

:P
Current Letter : y
Current Letter : t

Current Letter : o

Current Letter : n

Current variable value :
Current variable value :
Current variable value :
Current variable value :
Current variable value :
Current variable value :
Current variable value :

Current variable value :

S~ D W kA O 3 0 O

Current variable value :
Good bye!

Python pass Statement

It is used when a statement is required syntactically but you do not want any command or code
to execute.

The pass statement is a null operation; nothing happens when it executes. The pass is also
useful in places where your code will eventually go, but has not been written yet (e.g., in stubs
for example) —

Syntax

pass

#!/usr/bin/python

for letter in ‘Python’:
if letter == ‘h’:
pass
print “This is pass block’
print ‘Current Letter :’, letter

print “Good bye!”

When the above code is executed, it produces following result —

Current Letter : P
Current Letter : y

Current Letter : t

This is pass block
Current Letter : h
Current Letter : o
Current Letter : n
Good bye!

Next Steps?

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav(@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

