
Gizmofacts 1

GIZMOFACTS

PYTHON
LIST AND
TUPLES

Kaustav Ghosh
Dastidar

www.gizmofacts.com

Gizmofacts 2

Python
Lists and Tuples

Preface

Always wanted to have a go at programming? No more excuses, Python is the ideal way
to get started!

Python is an excellent programming language for both novices and experts. It is designed
with code readability in mind, making it an excellent choice for beginners learning
various programming concepts.

The language is widely used and has many libraries, allowing programmers to accomplish
a lot with little code.

I hope you enjoyed my previous three modules, Python Fundamentals, Python Decision
Making and Controls & Python Numbers and Strings. If not, please proceed on rush for
a quick revision. Here is the fourth module and the most important topics I will cover
here i.e. Python Lists and Tuples.

List is an ordered collection of elements. By ordered we mean that the elements are
stored one after the other. Lists are mutable this means that the content of the list can be
modified by adding, removing or changing objects during the execution of the program.

Just like list tuple is also an ordered collection of elements. However, unlike lists tuples
are immutable. Which means that once a tuple is created, we cannot add, delete, modify
the elements of the tuple.

This book is written to help you to learn Python programming quickly and effectively.

With Warm Regards,
Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

Gizmofacts 3

About The Author
The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Gizmofacts 4

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

Disclaimer

Gizmofacts 5

Python Lists ..6-22

Python Tuples ..23-31

Python - Dictionary ... 32-48

Next Steps?..49

Table of Content

Gizmofacts 6

Python - Lists

The most basic data structure in Python is the sequence. Each element of a sequence is assigned
a number - its position or index. The first index is zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples,
which we would see in this tutorial.

There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in
functions for finding the length of a sequence and for finding its largest and smallest elements.

The list is a most versatile datatype available in Python which can be written as a list of com-
ma-separated values (items) between square brackets. Important thing about a list is that items
in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brack-
ets. For example −

To access values in lists, use the square brackets for slicing along with the index or indices to
obtain value available at that index. For example −

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Python Lists

Accessing Values in Lists

list1 = [‘physics’, ‘chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = [“a”, “b”, “c”, “d”]

#!/usr/bin/python

list1 = [‘physics’, ‘chemistry’, 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7];
print “list1[0]: “, list1[0]
print “list2[1:5]: “, list2[1:5]

Gizmofacts 7

When the above code is executed, it produces the following result −

list1[0]: physics
list2[1:5]: [2, 3, 4, 5]

Value available at index 2 :
1997
New value available at index 2 :
2001

#!/usr/bin/python

list = [‘physics’, ‘chemistry’, 1997, 2000];
print “Value available at index 2 : “
print list[2]
list[2] = 2001;
print “New value available at index 2 : “
print list[2]

#!/usr/bin/python

list1 = [‘physics’, ‘chemistry’, 1997, 2000];
print list1
del list1[2];
print “After deleting value at index 2 : “
print list1

Updating Lists

Delete List Elements

You can update single or multiple elements of lists by giving the slice on the left-hand side of
the assignment operator, and you can add to elements in a list with the append() method. For
example −

To remove a list element, you can use either the del statement if you know exactly which ele-
ment(s) you are deleting or the remove() method if you do not know. For example −

Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result −

Gizmofacts 8

When the above code is executed, it produces following result −

Note − remove() method is discussed in subsequent section.

Because lists are sequences, indexing and slicing work the same way for lists as they do for
strings.

Assuming following input −

[‘physics’, ‘chemistry’, 1997, 2000]
After deleting value at index 2 :
[‘physics’, ‘chemistry’, 2000]

L = [‘spam’, ‘Spam’, ‘SPAM!’]

Basic List Operations

Indexing, Slicing, and Matrixes

Lists respond to the + and * operators much like strings; they mean concatenation and repeti-
tion here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior
chapter.

Python Expression Results Description

 len([1, 2, 3]) 3 Length

 [‘Hi!’] * 4 [‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’] Repetition

 3 in [1, 2, 3] True Membership

 for x in [1, 2, 3]: print x, 1 2 3 Iteration

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

Gizmofacts 9

Python Expression Results Description

 L[2] SPAM! Offsets start at zero

 L[1:] [‘Spam’, ‘SPAM!’] Slicing fetches sections

 L[-2] Spam Negative: count from the
 right

Built-in List Functions & Methods
Python includes the following list functions −

Function with Description

Compares elements of both lists.

Gives the total length of the list.

Returns item from the list with max value.

Returns item from the list with min value.

Converts a tuple into list.

cmp(list1, list2)

len(list)

max(list)

min(list)

list(seq)

Sr.No.

1

2

3

4

5

Python List cmp() Method
Description
Python list method cmp() compares elements of two lists.

Syntax
Following is the syntax for cmp() method −

Gizmofacts 10

cmp(list1, list2)

#!/usr/bin/python

list1, list2 = [123, ‘xyz’], [456, ‘abc’]
print cmp(list1, list2)
print cmp(list2, list1)
list3 = list2 + [786];
print cmp(list2, list3)

-1
1
-1

•	 list1 − This is the first list to be compared.

•	 list2 − This is the second list to be compared.

•	 If numbers, perform numeric coercion if necessary and compare.

•	 If either element is a number, then the other element is “larger” (numbers are “smallest”).

•	 Otherwise, types are sorted alphabetically by name.

Parameters

Return Value
If elements are of the same type, perform the compare and return the result. If elements are different types,
check to see if they are numbers.

Example
The following example shows the usage of cmp() method.

When we run above program, it produces following result −

If we reached the end of one of the lists, the longer list is “larger.” If we exhaust both lists and share the

same data, the result is a tie, meaning that 0 is returned.

Python List len() Method
Description
Python list method len() returns the number of elements in the list.

Syntax
Following is the syntax for len() method −

Gizmofacts 11

len(list)

max(list)

#!/usr/bin/python

list1, list2 = [123, ‘xyz’, ‘zara’], [456, ‘abc’]
print “First list length : “, len(list1)
print “Second list length : “, len(list2)

First list length : 3
Second list length : 2

•	 list1 − This is a list for which number of elements to be counted.

•	 list1 − This is a list from which max valued element to be returned.

Parameters

Parameters

Return Value
This method returns the number of elements in the list.

Return Value
This method returns the elements from the list with maximum value.

Example
The following example shows the usage of len() method.

When we run above program, it produces following result −

Python List max() Method
Description
Python list method max returns the elements from the list with maximum value.

Syntax
Following is the syntax for max() method −

Gizmofacts 12

#!/usr/bin/python

list1, list2 = [123, ‘xyz’, ‘zara’, ‘abc’], [456, 700, 200]
print “Max value element : “, max(list1)
print “Max value element : “, max(list2)

#!/usr/bin/python

list1, list2 = [123, ‘xyz’, ‘zara’, ‘abc’], [456, 700, 200]
print “min value element : “, min(list1)
print “min value element : “, min(list2)

Max value element : zara
Max value element : 700

Example
The following example shows the usage of cmp() method.

Example
The following example shows the usage of min() method.

When we run above program, it produces following result −

min(list)

•	 list1 − This is a list from which min valued element to be returned.

Parameters

Return Value
This method returns the elements from the list with minimum value.

Python List min() Method
Description
Python list method min() returns the elements from the list with minimum value.

Syntax
Following is the syntax for min() method −

Gizmofacts 13

#!/usr/bin/python

aTuple = (123, ‘xyz’, ‘zara’, ‘abc’);
aList = list(aTuple)
print “List elements : “, aList

min value element : 123
min value element : 200

Example
The following example shows the usage of list() method.

When we run above program, it produces following result −

When we run above program, it produces following result −

list(seq)

List elements : [123, ‘xyz’, ‘zara’, ‘abc’]

•	 seq − This is a tuple to be converted into list.

Return Value
This method returns the list.

Python List list () Method
Description

Python list method list() takes sequence types and converts them to lists. This is used to convert a given

tuple into list.

Note − Tuple are very similar to lists with only difference that element values of a tuple can not be changed

and tuple elements are put between parentheses instead of square bracket.

Syntax
Following is the syntax for list() method −

Gizmofacts 14

Python includes following list methods

Function with Description

Appends object obj to list

Returns count of how many times obj occurs in list

Appends the contents of seq to list

Returns the lowest index in list that obj appears

Inserts object obj into list at offset index

Removes and returns last object or obj from list

Removes object obj from list

Reverses objects of list in place

Sorts objects of list, use compare func if given

list.append(obj)

list.count(obj)

list.extend(seq)

list.index(obj)

list.insert(index, obj)

list.pop(obj=list[-1])

list.remove(obj)

list.reverse()

list.sort([func])

Sr.No.

1

2

3

4

5

6

7

8

9

Gizmofacts 15

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’];
aList.append(2009);
print “Updated List : “, aList

Example
The following example shows the usage of append() method.

list.append(obj)

•	 obj − This is the object to be appended in the list.

Parameters

Return Value
This method does not return any value but updates existing list.

Python List append() Method
Description
Python list method append() appends a passed obj into the existing list.

Syntax
Following is the syntax for append() method −

Python List count() Method
Description
Python list method count() returns count of how many times obj occurs in list.

Syntax
Following is the syntax for count() method −

When we run above program, it produces following result −

Updated List : [123, ‘xyz’, ‘zara’, ‘abc’, 2009]

list.count(obj)

Gizmofacts 16

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, 123];
print “Count for 123 : “, aList.count(123)
print “Count for zara : “, aList.count(‘zara’)

Example
The following example shows the usage of count() method.

Example
The following example shows the usage of extend() method.

When we run above program, it produces following result −

Count for 123 : 2
Count for zara : 1

•	 obj − This is the object to be counted in the list.

•	 seq − This is the list of elements

Parameters

Parameters

Return Value
This method returns count of how many times obj occurs in list.

Return Value
This method does not return any value but add the content to existing list.

Python List extend() Method
Description
Python list method extend() appends the contents of seq to list.

Syntax
Following is the syntax for extend() method −

list.extend(seq)

Gizmofacts 17

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, 123];
bList = [2009, ‘manni’];
aList.extend(bList)
print “Extended List : “, aList

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’];
print “Index for xyz : “, aList.index(‘xyz’)
print “Index for zara : “, aList.index(‘zara’)

Example
The following example shows the usage of index() method.

When we run above program, it produces following result −

When we run above program, it produces following result −

Extended List : [123, ‘xyz’, ‘zara’, ‘abc’, 123, 2009, ‘manni’]

•	 obj − This is the object to be find out.

Parameters

Return Value
This method returns index of the found object otherwise raise an exception indicating that value does not find.

Python List index() Method
Description
Python list method index() returns the lowest index in list that obj appears.

Syntax
Following is the syntax for index() method −

list.index(obj)

Gizmofacts 18

Index for xyz : 1
Index for zara : 2

Example
The following example shows the usage of insert() method.

•	 index − This is the Index where the object obj need to be inserted.

•	 obj − This is the Object to be inserted into the given list.

Parameters

Return Value
This method does not return any value but it inserts the given element at the given index.

Python List insert() Method
Description
Python list method insert() inserts object obj into list at offset index.

Syntax
Following is the syntax for insert() method −

list.insert(index, obj)

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’]
aList.insert(3, 2009)
print “Final List : “, aList

When we run above program, it produces following result −

Final List : [123, ‘xyz’, ‘zara’, 2009, ‘abc’]

Gizmofacts 19

Example
The following example shows the usage of pop() method.

•	 obj − This is an optional parameter, index of the object to be removed from the list.

Parameters

Return Value
This method returns the removed object from the list.

Python List pop() Method
Description

Python list method pop() removes and returns last object or obj from the list.

Syntax
Following is the syntax for pop() method −

Python List remove() Method
Description

Python list method remove() searches for the given element in the list and removes the first matching ele-
ment.

Syntax
Following is the syntax for remove() method −

list.pop(obj = list[-1])

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’];
print “A List : “, aList.pop()
print “B List : “, aList.pop(2)

When we run above program, it produces following result −

A List : abc
B List : zara

Gizmofacts 20

Example
The following example shows the usage of remove() method.

•	 obj − This is the object to be removed from the list.

Parameters

Return Value
This Python list method does not return any value but removes the given object from the list.

list.remove(obj)

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.remove(‘xyz’);
print “List : “, aList
aList.remove(‘abc’);
print “List : “, aList

When we run above program, it produces following result −

List : [123, ‘zara’, ‘abc’, ‘xyz’]
List : [123, ‘zara’, ‘xyz’]

Python List reverse() Method
Description

Python list method reverse() reverses objects of list in place.

Syntax
Following is the syntax for reverse() method −

•	 NA

Parameters

list.reverse()

Gizmofacts 21

Python List sort() Method
Description

Python list method sort() sorts objects of list, use compare func if given.

Syntax
Following is the syntax for sort() method −

•	 NA

Parameters

list.sort([func])

Example
The following example shows the usage of reverse() method.

Example
The following example shows the usage of sort() method.

Return Value
This method does not return any value but reverse the given object from the list.

Return Value
This method does not return any value but it changes from the original list.

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.reverse();
print “List : “, aList

When we run above program, it produces following result −

List : [‘xyz’, ‘abc’, ‘zara’, ‘xyz’, 123]

Gizmofacts 22

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’, ‘xyz’];
aList.sort();
print “List : “, aList

When we run above program, it produces following result −

List : [123, ‘abc’, ‘xyz’, ‘xyz’, ‘zara’]

Gizmofacts 23

tup1 = (‘physics’, ‘chemistry’, 1997, 2000);
tup2 = (1, 2, 3, 4, 5);
tup3 = “a”, “b”, “c”, “d”;

#!/usr/bin/python

tup1 = (‘physics’, ‘chemistry’, 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7);
print “tup1[0]: “, tup1[0];
print “tup2[1:5]: “, tup2[1:5];

The empty tuple is written as two parentheses containing nothing −

To write a tuple containing a single value you have to include a comma, even though there is
only one value −

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

When the above code is executed, it produces the following result −

tup1 = ();

tup1 = (50,);

tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

Python - Lists

A tuple is a collection of objects which ordered and immutable. Tuples are sequences,
just like lists. The differences between tuples and lists are, the tuples cannot be changed
unlike lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally
you can put these comma-separated values between parentheses also. For example −

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices
to obtain value available at that index. For example −

Gizmofacts 24

Updating Tuples
Tuples are immutable which means you cannot update or change the values of tuple ele-

ments. You are able to take portions of existing tuples to create new tuples as the following
example demonstrates −

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with
putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

#!/usr/bin/python

tup1 = (12, 34.56);
tup2 = (‘abc’, ‘xyz’);

Following action is not valid for tuples
tup1[0] = 100;

So let’s create a new tuple as follows
tup3 = tup1 + tup2;
print tup3;

#!/usr/bin/python

tup = (‘physics’, ‘chemistry’, 1997, 2000);
print tup;
del tup;
print “After deleting tup : “;
print tup;

When the above code is executed, it produces the following result −

This produces the following result. Note an exception raised, this is because after del tup tuple

does not exist any more −

(12, 34.56, ‘abc’, ‘xyz’)

Gizmofacts 25

Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean concatenation and repe-

tition here too, except that the result is a new tuple, not a string.
In fact, tuples respond to all of the general sequence operations we used on strings in the prior
chapter −

Indexing, Slicing, and Matrixes
Because tuples are sequences, indexing and slicing work the same way for tuples as they do

for strings. Assuming following input −

(‘physics’, ‘chemistry’, 1997, 2000)
After deleting tup :
Traceback (most recent call last):
 File “test.py”, line 9, in <module>
 print tup;
NameError: name ‘tup’ is not defined

L = (‘spam’, ‘Spam’, ‘SPAM!’)

Python Expression

Python Expression

Results

Results

Description

Description

 len((1, 2, 3))

L[2]

 3

‘SPAM!’

 Length

Offsets start at zero

 (‘Hi!’,) * 4

L[1:]

(‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’)

[‘Spam’, ‘SPAM!’]

 Repetition

Slicing fetches sections

 3 in (1, 2, 3) True Membership

 for x in (1, 2, 3): print x, 1 2 3 Iteration

(1, 2, 3) + (4, 5, 6)

L[-2]

 (1, 2, 3, 4, 5, 6)

 ‘Spam’

 Concatenation

Negative: count from the right

Gizmofacts 26

No Enclosing Delimiters
Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples −

Built-in Tuple Functions
Python includes the following tuple functions −

#!/usr/bin/python

print ‘abc’, -4.24e93, 18+6.6j, ‘xyz’;
x, y = 1, 2;
print “Value of x , y : “, x,y;

When the above code is executed, it produces the following result −

abc -4.24e+93 (18+6.6j) xyz
Value of x , y : 1 2

Function with Description

Compares elements of both tuples.

Gives the total length of the tuple.

Returns item from the tuple with max value.

Returns item from the tuple with min value.

Converts a list into tuple.

cmp(tuple1, tuple2)

len(tuple)

max(tuple)

min(tuple)

tuple(seq)

Sr.No.

1

2

3

4

5

Gizmofacts 27

Example
The following example shows the usage of cmp() method.

•	 tuple1 −This is the first tuple to be compared

•	 tuple2 − This is the second tuple to be compared

•	 If numbers, perform numeric coercion if necessary and compare.

•	 If either element is a number, then the other element is “larger” (numbers are “smallest”).

•	 Otherwise, types are sorted alphabetically by name.

Parameters

Return Value
If elements are of the same type, perform the compare and return the result. If elements are different types,
check to see if they are numbers.

If we reached the end of one of the tuples, the longer tuple is “larger.” If we exhaust both tuples and share
the same data, the result is a tie, meaning that 0 is returned.

Python Tuple cmp() Method
Description

Python tuple method cmp() compares elements of two tuples.

Syntax
Following is the syntax for cmp() method −

cmp(tuple1, tuple2)

#!/usr/bin/python

tuple1, tuple2 = (123, ‘xyz’), (456, ‘abc’)
print cmp(tuple1, tuple2)
print cmp(tuple2, tuple1)
tuple3 = tuple2 + (786,);
print cmp(tuple2, tuple3)

When we run above program, it produces following result −

-1
1
-1

Gizmofacts 28

Example
The following example shows the usage of len() method.

•	 tuple − This is a tuple for which number of elements to be counted.

Parameters

Return Value
This method returns the number of elements in the tuple.

Python Tuple len() Method
Description

Python tuple method len() returns the number of elements in the tuple.

Syntax
Following is the syntax for len() method −

Python Tuple max() Method
Description

Python tuple method max() returns the elements from the tuple with maximum value.

Syntax
Following is the syntax for max() method −

len(tuple)

max(tuple)

#!/usr/bin/python

tuple1, tuple2 = (123, ‘xyz’, ‘zara’), (456, ‘abc’)
print “First tuple length : “, len(tuple1)
print “Second tuple length : “, len(tuple2)

When we run above program, it produces following result −

First tuple length : 3
Second tuple length : 2

Gizmofacts 29

Example
The following example shows the usage of min() method.

Example
The following example shows the usage of max() method.

•	 tuple − This is a tuple from which min valued element to be returned.

•	 tuple − This is a tuple from which max valued element to be returned.

Parameters

Parameters

Return Value
This method returns the elements from the tuple with minimum value.

Return Value
This method returns the elements from the tuple with maximum value.

Python Tuple min() Method
Description

Python tuple method min() returns the elements from the tuple with minimum value.

Syntax
Following is the syntax for min() method −

min(tuple)

#!/usr/bin/python

tuple1, tuple2 = (123, ‘xyz’, ‘zara’, ‘abc’), (456, 700, 200)
print “Max value element : “, max(tuple1)
print “Max value element : “, max(tuple2)

When we run above program, it produces following result −

Max value element : zara
Max value element : 700

Gizmofacts 30

#!/usr/bin/python

tuple1, tuple2 = (123, ‘xyz’, ‘zara’, ‘abc’), (456, 700, 200)
print “min value element : “, min(tuple1)
print “min value element : “, min(tuple2)

#!/usr/bin/python

aList = [123, ‘xyz’, ‘zara’, ‘abc’]
aTuple = tuple(aList)
print “Tuple elements : “, aTuple

When we run above program, it produces following result −

min value element : 123
min value element : 200

Example
The following example shows the usage of tuple() method.

•	 seq − This is a sequence to be converted into tuple.

Parameters

Return Value
This method returns the tuple.

Python Tuple tuple() Method
Description

Python tuple method tuple() converts a list of items into tuples

Syntax
Following is the syntax for tuple() method −

tuple(seq)

Gizmofacts 31

When we run above program, it produces following result −

Tuple elements : (123, ‘xyz’, ‘zara’, ‘abc’)

Gizmofacts 32

Python - Dictionary

Each key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary without any items is written with
just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be
of any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to
obtain its value. Following is a simple example −

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
print “dict[‘Name’]: “, dict[‘Name’]
print “dict[‘Age’]: “, dict[‘Age’]

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
print “dict[‘Alice’]: “, dict[‘Alice’]

dict[‘Alice’]:
Traceback (most recent call last):
 File “test.py”, line 4, in <module>
 print “dict[‘Alice’]: “, dict[‘Alice’];
KeyError: ‘Alice’

When the above code is executed, it produces the following result −

When the above code is executed, it produces the following result −

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error as follows −

dict[‘Name’]: Zara
dict[‘Age’]: 7

Gizmofacts 33

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing
entry, or deleting an existing entry as shown below in the simple example −

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictio-
nary. You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple
example −

dict[‘Age’]: 8
dict[‘School’]: DPS School

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
dict[‘Age’] = 8; # update existing entry
dict[‘School’] = “DPS School”; # Add new entry

print “dict[‘Age’]: “, dict[‘Age’]
print “dict[‘School’]: “, dict[‘School’]

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Class’: ‘First’}
del dict[‘Name’]; # remove entry with key ‘Name’
dict.clear(); # remove all entries in dict
del dict ; # delete entire dictionary

print “dict[‘Age’]: “, dict[‘Age’]
print “dict[‘School’]: “, dict[‘School’]

When the above code is executed, it produces the following result −

This produces the following result. Note that an exception is raised because after del dict dictionary does not

exist any more −

Gizmofacts 34

dict[‘Age’]:
Traceback (most recent call last):
 File “test.py”, line 8, in <module>
 print “dict[‘Age’]: “, dict[‘Age’];
TypeError: ‘type’ object is unsubscriptable

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Name’: ‘Manni’}
print “dict[‘Name’]: “, dict[‘Name’]

#!/usr/bin/python

dict = {[‘Name’]: ‘Zara’, ‘Age’: 7}
print “dict[‘Name’]: “, dict[‘Name’]

Traceback (most recent call last):
 File “test.py”, line 3, in <module>
 dict = {[‘Name’]: ‘Zara’, ‘Age’: 7};
TypeError: unhashable type: ‘list’

dict[‘Name’]: Manni

Note − del() method is discussed in subsequent section.

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys but
something like [‘key’] is not allowed. Following is a simple example −

When the above code is executed, it produces the following result −

When the above code is executed, it produces the following result −

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard
objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When
duplicate keys encountered during assignment, the last assignment wins. For example −

Gizmofacts 35

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions −

Function with Description

Compares elements of both dict.

Gives the total length of the dictionary. This would be equal to the number of
items in the dictionary.

Produces a printable string representation of a dictionary

Returns the type of the passed variable. If passed variable is dictionary, then it
would return a dictionary type.

cmp(dict1, dict2)

len(dict)

str(dict)

type(variable)

Sr.No.

1

2

3

4

Example
The following example shows the usage of cmp() method.

•	 dict1 − This is the first dictionary to be compared with dict2.

•	 dict2 − This is the second dictionary to be compared with dict1.

Parameters

Return Value
This method returns 0 if both dictionaries are equal, -1 if dict1 < dict2 and 1 if dict1 > dic2.

Python dictionary cmp() Method
Description

Python dictionary method cmp() compares two dictionaries based on key and values.

Syntax
Following is the syntax for cmp() method −

cmp(dict1, dict2)

Gizmofacts 36

#!/usr/bin/python

dict1 = {‘Name’: ‘Zara’, ‘Age’: 7};
dict2 = {‘Name’: ‘Mahnaz’, ‘Age’: 27};
dict3 = {‘Name’: ‘Abid’, ‘Age’: 27};
dict4 = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Return Value : %d” % cmp (dict1, dict2)
print “Return Value : %d” % cmp (dict2, dict3)
print “Return Value : %d” % cmp (dict1, dict4)

Return Value : -1
Return Value : 1
Return Value : 0

When we run above program, it produces following result −

Example
The following example shows the usage of len() method.

•	 dict1 − This is the dictionary, whose length needs to be calculated.

Parameters

Return Value
This method returns the length.

Python dictionary len() Method
Description

Python dictionary method len() gives the total length of the dictionary. This would be equal to the number of
items in the dictionary.

Syntax
Following is the syntax for len() method −

len(dict)

Gizmofacts 37

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Length : %d” % len (dict)

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Equivalent String : %s” % str (dict)

Length : 2

Equivalent String : {‘Age’: 7, ‘Name’: ‘Zara’}

When we run above program, it produces following result −

When we run above program, it produces following result −

Example
The following example shows the usage of str() method.

•	 dict − This is the dictionary.

Parameters

Return Value
This method returns string representation.

Python dictionary str() Method
Description

Python dictionary method str() produces a printable string representation of a dictionary.

Syntax
Following is the syntax for str() method −

str(dict)

Gizmofacts 38

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Variable Type : %s” % type (dict)

Variable Type : <type ‘dict’>

When we run above program, it produces following result −

Example
The following example shows the usage of type() method.

•	 dict − This is the dictionary.

Parameters

Return Value
This method returns the type of the passed variable.

Python dictionary type() Method
Description

Python dictionary method type() returns the type of the passed variable. If passed variable is dictionary then
it would return a dictionary type.

Syntax
Following is the syntax for type() method −

type(dict)

Gizmofacts 39

Python includes following dictionary methods −

Function with Description

Removes all elements of dictionary dict

Returns a shallow copy of dictionary dict

Create a new dictionary with keys from seq and values set to value.

For key key, returns value or default if key not in dictionary

Returns true if key in dictionary dict, false otherwise

Returns a list of dict’s (key, value) tuple pairs

Returns list of dictionary dict’s keys

Similar to get(), but will set dict[key]=default if key is not already in dict

Adds dictionary dict2’s key-values pairs to dict

Returns list of dictionary dict’s values

dict.clear()

dict.copy()

dict.fromkeys()

dict.get(key, default=None)

dict.has_key(key)

dict.items()

dict.keys()

dict.setdefault(key, default=None)

dict.update(dict2)

dict.values()

Sr.No.

1

2

3

4

5

6

7

8

8

10

Gizmofacts 40

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7};
print “Start Len : %d” % len(dict)
dict.clear()
print “End Len : %d” % len(dict)

Start Len : 2
End Len : 0

When we run above program, it produces following result −

Example
The following example shows the usage of clear() method.

•	 NA

Parameters

Return Value
This method does not return any value.

Python dictionary clear() Method
Description

Python dictionary method clear() removes all items from the dictionary.

Syntax
Following is the syntax for clear() method −

Python dictionary copy() Method

Description

Python dictionary method copy() returns a shallow copy of the dictionary.

Syntax
Following is the syntax for copy() method −

dict.clear()

Gizmofacts 41

#!/usr/bin/python

dict1 = {‘Name’: ‘Zara’, ‘Age’: 7};
dict2 = dict1.copy()
print “New Dictionary : %s” % str(dict2)

When we run above program, it produces following result −

Example
The following example shows the usage of copy() method.

•	 seq − This is the list of values which would be used for dictionary keys

preparation.

•	 value − This is optional, if provided then value would be set to this value

•	 NA

Parameters

Parameters

Return Value
This method returns the list.

Return Value
This method returns a shallow copy of the dictionary.

Python dictionary fromkeys() Method
Description

Python dictionary method fromkeys() creates a new dictionary with keys from seq and values set to value.

Syntax

Following is the syntax for fromkeys() method −

dict.fromkeys(seq[, value])

New Dictionary : {‘Age’: 7, ‘Name’: ‘Zara’}

dict.copy()

Gizmofacts 42

#!/usr/bin/python

seq = (‘name’, ‘age’, ‘sex’)
dict = dict.fromkeys(seq)
print “New Dictionary : %s” % str(dict)

dict = dict.fromkeys(seq, 10)
print “New Dictionary : %s” % str(dict)

New Dictionary : {‘age’: None, ‘name’: None, ‘sex’: None}
New Dictionary : {‘age’: 10, ‘name’: 10, ‘sex’: 10}

When we run above program, it produces following result −

Example
The following example shows the usage of fromkeys() method.

•	 key − This is the Key to be searched in the dictionary.

•	 default − This is the Value to be returned in case key does not exist.

Parameters

Return Value
This method return a value for the given key. If key is not available, then returns default value None.

Python dictionary get() Method
Description

Python dictionary method get() returns a value for the given key. If key is not available then returns default

value None.

Syntax

Following is the syntax for get() method −

dict.get(key, default = None)

Gizmofacts 43

#!/usr/bin/python

dict = {‘Name’: ‘Zabra’, ‘Age’: 7}
print “Value : %s” % dict.get(‘Age’)
print “Value : %s” % dict.get(‘Education’, “Never”)

Value : 7
Value : Never

When we run above program, it produces following result −

Example
The following example shows the usage of has_key() method.

Example
The following example shows the usage of get() method.

•	 key − This is the Key to be searched in the dictionary.

Parameters

Return Value
This method return true if a given key is available in the dictionary, otherwise it returns a false.

Python dictionary has_key() Method
Description

Python dictionary method has_key() returns true if a given key is available in the dictionary, otherwise it
returns a false.

Syntax

Following is the syntax for has_key() method −

dict.has_key(key)

Gizmofacts 44

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.has_key(‘Age’)
print “Value : %s” % dict.has_key(‘Sex’)

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.items()

When we run above program, it produces following result −

When we run above program, it produces following result −

Value : True
Value : False

Example
The following example shows the usage of items() method.

•	 NA

Parameters

Return Value
This method returns a list of tuple pairs.

Python dictionary items() Method
Description

Python dictionary method items() returns a list of dict’s (key, value) tuple pairs

Syntax
Following is the syntax for items() method −

dict.items()

Value : [(‘Age’, 7), (‘Name’, ‘Zara’)]

Gizmofacts 45

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.keys()

When we run above program, it produces following result −

Example
The following example shows the usage of keys() method.

•	 NA

Parameters

Return Value
This method returns a list of all the available keys in the dictionary.

Python dictionary keys() Method
Description

Python dictionary method keys() returns a list of all the available keys in the dictionary.

Syntax

Following is the syntax for keys() method −

dict.keys()

Value : [‘Age’, ‘Name’]

Gizmofacts 46

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.setdefault(‘Age’, None)
print “Value : %s” % dict.setdefault(‘Sex’, None)

When we run above program, it produces following result −

Example
The following example shows the usage of setdefault() method.

•	 key − This is the key to be searched.

•	 default − This is the Value to be returned in case key is not found.

Parameters

Return Value
This method returns the key value available in the dictionary and if given key is not available then it will

return provided default value.

Python dictionary setdefault() Method

Description

Python dictionary method setdefault() is similar to get(), but will set dict[key]=default if key is not already

in dict.

Syntax

Following is the syntax for setdefault() method −

dict.setdefault(key, default=None)

Value : 7
Value : None

Gizmofacts 47

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
dict2 = {‘Sex’: ‘female’ }

dict.update(dict2)
print “Value : %s” % dict

When we run above program, it produces following result −

Example
The following example shows the usage of update() method.

•	 dict2 − This is the dictionary to be added into dict.

Parameters

Return Value
This method does not return any value.

Python dictionary update() Method

Description

Python dictionary method update() adds dictionary dict2’s key-values pairs in to dict. This function does not

return anything.

Syntax
Following is the syntax for update() method −

dict.update(dict2)

Value : {‘Age’: 7, ‘Name’: ‘Zara’, ‘Sex’: ‘female’}

Gizmofacts 48

#!/usr/bin/python

dict = {‘Name’: ‘Zara’, ‘Age’: 7}
print “Value : %s” % dict.values()

When we run above program, it produces following result −

Example
The following example shows the usage of values() method.

•	 NA

Parameters

Return Value
This method returns a list of all the values available in a given dictionary.

Python dictionary values() Method

Description

Python dictionary method values() returns a list of all the values available in a given dictionary.

Syntax
Following is the syntax for values() method −

dict.values()

Value : [7, ‘Zara’]

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

Next Steps?

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

