
Gizmofacts 1

P Y T H O N

MODULES

KAUSTAV GHOSH
DASTIDAR

G i z m o f a a c t s . c o m

GIZMOFAACTS

Gizmofacts 2

Python Modules

Preface

Always wanted to have a go at programming? No more excuses, Python is the ideal way
to get started!

Python is an excellent programming language for both novices and experts. It is designed
with code readability in mind, making it an excellent choice for beginners learning
various programming concepts.

The language is widely used and has many libraries, allowing programmers to accomplish
a lot with little code.

I hope you enjoyed my previous five modules, Python Fundamentals, Python Decision
Making and Controls, Python Numbers and Strings, Python Lists and Tuples, and
Python Date, Time, and Functions. If not, please proceed with a rush revision. Another
interesting module I’ll go over is: Python modules.

A module is a file that contains Python definitions and statements. A module is a file that
contains Python code; for example, a module named “Program” would be a “Program.
py” file. We use modules to break down large programmes into smaller, more manageable
chunks. Modules allow for code reuse as well. Instead of copying their definitions into
multiple programmes, we can define and import our most frequently used functions in
a module.

This book is written to help you to learn Python programming quickly and effectively.

 Enjoy Reading!

With Warm Regards,
Kaustav Ghosh Dastidar
Author & Founder of Gizmofacts

Gizmofacts 3

About The Author
The man behind Gizmofacts, Kaustav Ghosh Dastidar holds a Master Degree in
Computer Science. He is usually turned on (metaphorically) by technology and gadgets.
Born and raised in a quintessential middle class family he has been well aware of the
ignorance the mass harbours about technology. Through Gizmofacts he wants to reach
out to all those people, who he believes just need a little push to get into this unique and
amazing world of science and software.

Moreover, Kaustav is well aware that nurturing an interest in gadgets doesn’t come
cheap. Hence he wants to also be an enabler who would provide all the ‘need to know’
financial details of different gadgets so that people can live their dreams remaining in
their budget.

To know more about tips and tricks of softwares, gizmos and mobile apps, follow him
in Twitter, Facebook and Google+.

You may also subscribe to Gizmofacts in Youtube for getting more information about

software tips & tricks.

https://twitter.com/gizmofacts_
https://www.facebook.com/gizmofacts
https://www.youtube.com/user/gizmofactstechblog

Gizmofacts 4

This eBook may not be copied or distributed without permission in any way. This
publication’s content is offered solely for informational reasons. The usage or misuse
of this eBook, as well as any financial damage incurred by individuals or property as a
direct or indirect result of using this eBook, are not the author’s responsibility.

We are unable to guarantee your success or outcomes in the future due to some
unforeseeable risks associated with doing business online. You accept that the author is
not responsible for any success or failure of your business that is related in any way to
the download and use of our information and that the use of our information should be
based on your due diligence.

Without the author’s prior written consent, no portion of this eBook may be copied or
otherwise distributed in any way, including electronically, mechanically, by photocopy,
recording, or any other method

Copyright @ 2022 Kaustav Ghosh Dastidar All rights reserved.

Disclaimer

Gizmofacts 5

Python - Modules..6-11

Next Steps?...12

Table of Content

Gizmofacts 6

Python - Modules

A module allows you to logically organize your Python code. Grouping related code into
a module makes the code easier to understand and use. A module is a Python object with
arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes
and variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named aname.py. Here’s
an example of a simple module, support.py

The import Statement

You can use any Python source file as a module by executing an import statement in some
other Python source file. The import has the following syntax −

When the interpreter encounters an import statement, it imports the module if the module is
present in the search path. A search path is a list of directories that the interpreter searches
before importing a module. For example, to import the module support.py, you need to put the
following command at the top of the script −

def print_func(par):
 print “Hello : “, par
 return

import module1[, module2[,... moduleN]

#!/usr/bin/python

Import module support
import support

Now you can call defined function that module as follows
support.print_func(“Zara”)

Gizmofacts 7

The from...import Statement

Python’s from statement lets you import specific attributes from a module into the current
namespace. The from...import has the following syntax −

The from...import * Statement

Python’s from statement lets you import specific attributes from a module into the current
namespace. The from...import has the following syntax −

Locating Modules

When you import a module, the Python interpreter searches for the module in the following
sequences −

•	 The current directory.

When the above code is executed, it produces the following result −

For example, to import the function fibonacci from the module fib, use the following statement
−

A module is loaded only once, regardless of the number of times it is imported. This prevents
the module execution from happening over and over again if multiple imports occur.

This statement does not import the entire module fib into the current namespace; it just
introduces the item fibonacci from the module fib into the global symbol table of the importing
module.

This provides an easy way to import all the items from a module into the current namespace;
however, this statement should be used sparingly.

Hello : Zara

from fib import fibonacci

from modname import *

from modname import name1[, name2[, ... nameN]]

Gizmofacts 8

•	 The current directory.

•	 If the module isn’t found, Python then searches each directory in the shell variable
PYTHONPATH.

•	 If all else fails, Python checks the default path. On UNIX, this default path is normally /usr/
local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.
path variable contains the current directory, PYTHONPATH, and the installation-dependent
default.

And here is a typical PYTHONPATH from a UNIX system −

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax
of PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system −

Namespaces and Scoping

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable
names (keys) and their corresponding objects (values).

A Python statement can access variables in a local namespace and in the global namespace. If a
local and a global variable have the same name, the local variable shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping rule as
ordinary functions.

Python makes educated guesses on whether variables are local or global. It assumes that any
variable assigned a value in a function is local.

Therefore, in order to assign a value to a global variable within a function, you must first use
the global statement.

The statement global VarName tells Python that VarName is a global variable. Python stops
searching the local namespace for the variable.

set PYTHONPATH = c:\python20\lib;

set PYTHONPATH = /usr/local/lib/python

Gizmofacts 9

The dir() Function

The dir() built-in function returns a sorted list of strings containing the names defined by a
module.

The list contains the names of all the modules, variables and functions that are defined in a
module. Following is a simple example −

For example, we define a variable Money in the global namespace. Within the function Money,
we assign Money a value, therefore Python assumes Money as a local variable. However, we
accessed the value of the local variable Money before setting it, so an UnboundLocalError is
the result. Uncommenting the global statement fixes the problem.

When the above code is executed, it produces the following result −

Here, the special string variable __name__ is the module’s name, and __file__ is the filename
from which the module was loaded.

#!/usr/bin/python

Money = 2000
def AddMoney():
 # Uncomment the following line to fix the code:
 # global Money
 Money = Money + 1

print Money
AddMoney()
print Money

#!/usr/bin/python

Import built-in module math
import math

content = dir(math)
print content

[‘__doc__’, ‘__file__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’,
‘atan2’, ‘ceil’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’, ‘exp’,
‘fabs’, ‘floor’, ‘fmod’, ‘frexp’, ‘hypot’, ‘ldexp’, ‘log’,
‘log10’, ‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’,
‘sqrt’, ‘tan’, ‘tanh’]

Gizmofacts 10

The globals() and locals() Functions

The globals() and locals() functions can be used to return the names in the global and local
namespaces depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be accessed
locally from that function.

If globals() is called from within a function, it will return all the names that can be accessed
globally from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted using
the keys() function.

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is
executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use the reload()
function. The reload() function imports a previously imported module again. The syntax of the
reload() function is this −

Packages in Python

A package is a hierarchical file directory structure that defines a single Python application
environment that consists of modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source code
−

reload(module_name)

reload(hello)

#!/usr/bin/python

def Pots():
 print “I’m Pots Phone”

Here, module_name is the name of the module you want to reload and not the string containing
the module name. For example, to reload hello module, do the following −

Similar way, we have another two files having different functions with the same name as above
−

Gizmofacts 11

from Pots import Pots
from Isdn import Isdn
from G3 import G3

I’m Pots Phone
I’m 3G Phone
I’m ISDN Phone

#!/usr/bin/python

Now import your Phone Package.
import Phone

Phone.Pots()
Phone.Isdn()
Phone.G3()

Now, create one more file __init__.py in Phone directory −

To make all of your functions available when you’ve imported Phone, you need to put explicit
import statements in __init__.py as follows −

After you add these lines to __init__.py, you have all of these classes available when you
import the Phone package.

In the above example, we have taken example of a single functions in each file, but you can
keep multiple functions in your files. You can also define different Python classes in those files
and then you can create your packages out of those classes.

When the above code is executed, it produces the following result −

•	 Phone/Isdn.py file having function Isdn()

•	 Phone/G3.py file having function G3()

•	 Phone/__init__.py

Have any questions while reading the eBook? Want to
discuss programming, gadgets and gaming? You can
email us (kaustav@gizmofacts.com) where you can
ask any questions you have in min2d and subscribe to
our Newsletter and visit our Facebook Page.

You can also check our blog “Gizmofacts” where you
can find a ton of useful “how-to-guides”, tutorials
around blogging, programming, gadget reviews and
gaming.

Next Steps?

mailto:kaustav%40gizmofacts.com?subject=
https://www.facebook.com/gizmofacts
https://gizmofacts.com/

